File: index.go

package info (click to toggle)
golang-github-biogo-hts 1.1.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,660 kB
  • sloc: makefile: 3
file content (352 lines) | stat: -rw-r--r-- 9,048 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright ©2014 The bíogo Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package internal provides shared code for BAI and tabix index implementations.
package internal

import (
	"errors"
	"sort"

	"github.com/biogo/hts/bgzf"
	"github.com/biogo/hts/bgzf/index"
)

const (
	// TileWidth is the length of the interval tiling used
	// in BAI and tabix indexes.
	TileWidth = 0x4000

	// Levels is the number of levels in the index tree.
	Levels = 6

	// BinLimit is the maximum number of bins available in
	// a BAI or tabix index.
	BinLimit = ((1 << (Levels * nextBinShift)) - 1) / 7

	// StatsDummyBin is the bin number of the reference
	// statistics bin used in BAI and tabix indexes.
	StatsDummyBin = BinLimit + 1
)

// Index is a coordinate based index.
type Index struct {
	Refs       []RefIndex
	Unmapped   *uint64
	IsSorted   bool
	LastRecord int
}

// RefIndex is the index of a single reference.
type RefIndex struct {
	Bins      []Bin
	Stats     *ReferenceStats
	Intervals []bgzf.Offset
}

// Bin is an index bin.
type Bin struct {
	Bin    uint32
	Chunks []bgzf.Chunk
}

// ReferenceStats holds mapping statistics for a genomic reference.
type ReferenceStats struct {
	// Chunk is the span of the indexed BGZF
	// holding alignments to the reference.
	Chunk bgzf.Chunk

	// Mapped is the count of mapped reads.
	Mapped uint64

	// Unmapped is the count of unmapped reads.
	Unmapped uint64
}

// Record wraps types that may be indexed by an Index.
type Record interface {
	RefID() int
	Start() int
	End() int
}

// Add records the SAM record as having being located at the given chunk.
func (i *Index) Add(r Record, bin uint32, c bgzf.Chunk, placed, mapped bool) error {
	if !IsValidIndexPos(r.Start()) || !IsValidIndexPos(r.End()) {
		return errors.New("index: attempt to add record outside indexable range")
	}

	if i.Unmapped == nil {
		i.Unmapped = new(uint64)
	}
	if !placed {
		*i.Unmapped++
		return nil
	}

	rid := r.RefID()
	if rid < len(i.Refs)-1 {
		return errors.New("index: attempt to add record out of reference ID sort order")
	}
	if rid == len(i.Refs) {
		i.Refs = append(i.Refs, RefIndex{})
		i.LastRecord = 0
	} else if rid > len(i.Refs) {
		Refs := make([]RefIndex, rid+1)
		copy(Refs, i.Refs)
		i.Refs = Refs
		i.LastRecord = 0
	}
	ref := &i.Refs[rid]

	// Record bin information.
	for i, b := range ref.Bins {
		if b.Bin == bin {
			for j, chunk := range ref.Bins[i].Chunks {
				if vOffset(chunk.End) > vOffset(c.Begin) {
					ref.Bins[i].Chunks[j].End = c.End
					goto found
				}
			}
			ref.Bins[i].Chunks = append(ref.Bins[i].Chunks, c)
			goto found
		}
	}
	i.IsSorted = false // TODO(kortschak) Consider making use of this more effectively for bin search.
	ref.Bins = append(ref.Bins, Bin{
		Bin:    bin,
		Chunks: []bgzf.Chunk{c},
	})
found:

	// Record interval tile information.
	biv := r.Start() / TileWidth
	if r.Start() < i.LastRecord {
		return errors.New("index: attempt to add record out of position sort order")
	}
	i.LastRecord = r.Start()
	eiv := r.End() / TileWidth
	if eiv == len(ref.Intervals) {
		if eiv > biv {
			panic("index: unexpected alignment length")
		}
		ref.Intervals = append(ref.Intervals, c.Begin)
	} else if eiv > len(ref.Intervals) {
		intvs := make([]bgzf.Offset, eiv)
		if len(ref.Intervals) > biv {
			biv = len(ref.Intervals)
		}
		for iv, offset := range intvs[biv:eiv] {
			if !isZero(offset) {
				panic("index: unexpected non-zero offset")
			}
			intvs[iv+biv] = c.Begin
		}
		copy(intvs, ref.Intervals)
		ref.Intervals = intvs
	}

	// Record index stats.
	if ref.Stats == nil {
		ref.Stats = &ReferenceStats{
			Chunk: c,
		}
	} else {
		ref.Stats.Chunk.End = c.End
	}
	if mapped {
		ref.Stats.Mapped++
	} else {
		ref.Stats.Unmapped++
	}

	return nil
}

// Chunks returns a []bgzf.Chunk that corresponds to the given genomic interval.
func (i *Index) Chunks(rid, beg, end int) ([]bgzf.Chunk, error) {
	if rid < 0 || rid >= len(i.Refs) {
		return nil, index.ErrNoReference
	}
	i.sort()
	ref := i.Refs[rid]

	iv := beg / TileWidth
	if iv >= len(ref.Intervals) {
		return nil, index.ErrInvalid
	}

	// Collect candidate chunks according to the scheme described in
	// the SAM spec under section 5 Indexing BAM.
	var chunks []bgzf.Chunk
	for _, b := range OverlappingBinsFor(beg, end) {
		c := sort.Search(len(ref.Bins), func(i int) bool { return ref.Bins[i].Bin >= b })
		if c < len(ref.Bins) && ref.Bins[c].Bin == b {
			for _, chunk := range ref.Bins[c].Chunks {
				// Here we check all tiles starting from the left end of the
				// query region until we get a non-zero offset. The spec states
				// that we only need to check tiles that contain beg. That is
				// not correct since we may have no alignments at the left end
				// of the query region.
				chunkEndOffset := vOffset(chunk.End)
				haveNonZero := false
				for j, tile := range ref.Intervals[iv:] {
					// If we have found a non-zero tile, all subsequent active
					// tiles must also be non-zero, so skip zero tiles.
					if haveNonZero && isZero(tile) {
						continue
					}
					haveNonZero = true
					tbeg := (j + iv) * TileWidth
					tend := tbeg + TileWidth
					// We allow adjacent alignment since samtools behaviour here
					// has always irritated me and it is cheap to discard these
					// later if they are not wanted.
					if tend >= beg && tbeg <= end && chunkEndOffset > vOffset(tile) {
						chunks = append(chunks, chunk)
						break
					}
				}
			}
		}
	}

	// Sort and merge overlaps.
	if !sort.IsSorted(byBeginOffset(chunks)) {
		sort.Sort(byBeginOffset(chunks))
	}

	return chunks, nil
}

func (i *Index) sort() {
	if !i.IsSorted {
		for _, ref := range i.Refs {
			sort.Sort(byBinNumber(ref.Bins))
			for _, bin := range ref.Bins {
				sort.Sort(byBeginOffset(bin.Chunks))
			}
			sort.Sort(byVirtOffset(ref.Intervals))
		}
		i.IsSorted = true
	}
}

// MergeChunks applies the given MergeStrategy to all bins in the Index.
func (i *Index) MergeChunks(s func([]bgzf.Chunk) []bgzf.Chunk) {
	if s == nil {
		return
	}
	for _, ref := range i.Refs {
		for b, bin := range ref.Bins {
			if !sort.IsSorted(byBeginOffset(bin.Chunks)) {
				sort.Sort(byBeginOffset(bin.Chunks))
			}
			ref.Bins[b].Chunks = s(bin.Chunks)
			if !sort.IsSorted(byBeginOffset(bin.Chunks)) {
				sort.Sort(byBeginOffset(bin.Chunks))
			}
		}
	}
}

const (
	indexWordBits = 29
	nextBinShift  = 3
)

// IsValidIndexPos returns a boolean indicating whether
// the given position is in the valid range for BAM/SAM.
func IsValidIndexPos(i int) bool { return -1 <= i && i <= (1<<indexWordBits-1)-1 } // 0-based.

const (
	level0 = uint32(((1 << (iota * nextBinShift)) - 1) / 7)
	level1
	level2
	level3
	level4
	level5
)

const (
	level0Shift = indexWordBits - (iota * nextBinShift)
	level1Shift
	level2Shift
	level3Shift
	level4Shift
	level5Shift
)

// BinFor returns the bin number for given an interval covering
// [beg,end) (zero-based, half-close-half-open).
func BinFor(beg, end int) uint32 {
	end--
	switch {
	case beg>>level5Shift == end>>level5Shift:
		return level5 + uint32(beg>>level5Shift)
	case beg>>level4Shift == end>>level4Shift:
		return level4 + uint32(beg>>level4Shift)
	case beg>>level3Shift == end>>level3Shift:
		return level3 + uint32(beg>>level3Shift)
	case beg>>level2Shift == end>>level2Shift:
		return level2 + uint32(beg>>level2Shift)
	case beg>>level1Shift == end>>level1Shift:
		return level1 + uint32(beg>>level1Shift)
	}
	return level0
}

// OverlappingBinsFor returns the bin numbers for all bins overlapping
// an interval covering [beg,end) (zero-based, half-close-half-open).
func OverlappingBinsFor(beg, end int) []uint32 {
	end--
	list := []uint32{level0}
	for _, r := range []struct {
		offset, shift uint32
	}{
		{level1, level1Shift},
		{level2, level2Shift},
		{level3, level3Shift},
		{level4, level4Shift},
		{level5, level5Shift},
	} {
		for k := r.offset + uint32(beg>>r.shift); k <= r.offset+uint32(end>>r.shift); k++ {
			list = append(list, k)
		}
	}
	return list
}

func makeOffset(vOff uint64) bgzf.Offset {
	return bgzf.Offset{
		File:  int64(vOff >> 16),
		Block: uint16(vOff),
	}
}

func isZero(o bgzf.Offset) bool {
	return o == bgzf.Offset{}
}

func vOffset(o bgzf.Offset) int64 {
	return o.File<<16 | int64(o.Block)
}

type byBinNumber []Bin

func (b byBinNumber) Len() int           { return len(b) }
func (b byBinNumber) Less(i, j int) bool { return b[i].Bin < b[j].Bin }
func (b byBinNumber) Swap(i, j int)      { b[i], b[j] = b[j], b[i] }

type byBeginOffset []bgzf.Chunk

func (c byBeginOffset) Len() int           { return len(c) }
func (c byBeginOffset) Less(i, j int) bool { return vOffset(c[i].Begin) < vOffset(c[j].Begin) }
func (c byBeginOffset) Swap(i, j int)      { c[i], c[j] = c[j], c[i] }

type byVirtOffset []bgzf.Offset

func (o byVirtOffset) Len() int           { return len(o) }
func (o byVirtOffset) Less(i, j int) bool { return vOffset(o[i]) < vOffset(o[j]) }
func (o byVirtOffset) Swap(i, j int)      { o[i], o[j] = o[j], o[i] }