1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
|
/*
Package bitset implements bitsets, a mapping
between non-negative integers and boolean values. It should be more
efficient than map[uint] bool.
It provides methods for setting, clearing, flipping, and testing
individual integers.
But it also provides set intersection, union, difference,
complement, and symmetric operations, as well as tests to
check whether any, all, or no bits are set, and querying a
bitset's current length and number of positive bits.
BitSets are expanded to the size of the largest set bit; the
memory allocation is approximately Max bits, where Max is
the largest set bit. BitSets are never shrunk. On creation,
a hint can be given for the number of bits that will be used.
Many of the methods, including Set,Clear, and Flip, return
a BitSet pointer, which allows for chaining.
Example use:
import "bitset"
var b BitSet
b.Set(10).Set(11)
if b.Test(1000) {
b.Clear(1000)
}
if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
fmt.Println("Intersection works.")
}
As an alternative to BitSets, one should check out the 'big' package,
which provides a (less set-theoretical) view of bitsets.
*/
package bitset
import (
"bytes"
"encoding/base64"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"math/bits"
"strconv"
)
// the wordSize of a bit set
const wordSize = 64
// the wordSize of a bit set in bytes
const wordBytes = wordSize / 8
// wordMask is wordSize-1, used for bit indexing in a word
const wordMask = wordSize - 1
// log2WordSize is lg(wordSize)
const log2WordSize = 6
// allBits has every bit set
const allBits uint64 = 0xffffffffffffffff
// default binary BigEndian
var binaryOrder binary.ByteOrder = binary.BigEndian
// default json encoding base64.URLEncoding
var base64Encoding = base64.URLEncoding
// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
func Base64StdEncoding() { base64Encoding = base64.StdEncoding }
// LittleEndian sets Marshal/Unmarshal Binary as Little Endian (Default: binary.BigEndian)
func LittleEndian() { binaryOrder = binary.LittleEndian }
// BigEndian sets Marshal/Unmarshal Binary as Big Endian (Default: binary.BigEndian)
func BigEndian() { binaryOrder = binary.BigEndian }
// BinaryOrder returns the current binary order, see also LittleEndian()
// and BigEndian() to change the order.
func BinaryOrder() binary.ByteOrder { return binaryOrder }
// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
type BitSet struct {
length uint
set []uint64
}
// Error is used to distinguish errors (panics) generated in this package.
type Error string
// safeSet will fixup b.set to be non-nil and return the field value
func (b *BitSet) safeSet() []uint64 {
if b.set == nil {
b.set = make([]uint64, wordsNeeded(0))
}
return b.set
}
// SetBitsetFrom fills the bitset with an array of integers without creating a new BitSet instance
func (b *BitSet) SetBitsetFrom(buf []uint64) {
b.length = uint(len(buf)) * 64
b.set = buf
}
// From is a constructor used to create a BitSet from an array of words
func From(buf []uint64) *BitSet {
return FromWithLength(uint(len(buf))*64, buf)
}
// FromWithLength constructs from an array of words and length in bits.
// This function is for advanced users, most users should prefer
// the From function.
// As a user of FromWithLength, you are responsible for ensuring
// that the length is correct: your slice should have length at
// least (length+63)/64 in 64-bit words.
func FromWithLength(length uint, set []uint64) *BitSet {
if len(set) < wordsNeeded(length) {
panic("BitSet.FromWithLength: slice is too short")
}
return &BitSet{length, set}
}
// Bytes returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
//
// Deprecated: Bytes is deprecated. Use [BitSet.Words] instead.
func (b *BitSet) Bytes() []uint64 {
return b.set
}
// Words returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
func (b *BitSet) Words() []uint64 {
return b.set
}
// wordsNeeded calculates the number of words needed for i bits
func wordsNeeded(i uint) int {
if i > (Cap() - wordMask) {
return int(Cap() >> log2WordSize)
}
return int((i + wordMask) >> log2WordSize)
}
// wordsNeededUnbound calculates the number of words needed for i bits, possibly exceeding the capacity.
// This function is useful if you know that the capacity cannot be exceeded (e.g., you have an existing BitSet).
func wordsNeededUnbound(i uint) int {
return (int(i) + wordMask) >> log2WordSize
}
// wordsIndex calculates the index of words in a `uint64`
func wordsIndex(i uint) uint {
return i & wordMask
}
// New creates a new BitSet with a hint that length bits will be required.
// The memory usage is at least length/8 bytes.
// In case of allocation failure, the function will return a BitSet with zero
// capacity.
func New(length uint) (bset *BitSet) {
defer func() {
if r := recover(); r != nil {
bset = &BitSet{
0,
make([]uint64, 0),
}
}
}()
bset = &BitSet{
length,
make([]uint64, wordsNeeded(length)),
}
return bset
}
// MustNew creates a new BitSet with the given length bits.
// It panics if length exceeds the possible capacity or by a lack of memory.
func MustNew(length uint) (bset *BitSet) {
if length >= Cap() {
panic("You are exceeding the capacity")
}
return &BitSet{
length,
make([]uint64, wordsNeeded(length)), // may panic on lack of memory
}
}
// Cap returns the total possible capacity, or number of bits
// that can be stored in the BitSet theoretically. Under 32-bit system,
// it is 4294967295 and under 64-bit system, it is 18446744073709551615.
// Note that this is further limited by the maximum allocation size in Go,
// and your available memory, as any Go data structure.
func Cap() uint {
return ^uint(0)
}
// Len returns the number of bits in the BitSet.
// Note that it differ from Count function.
func (b *BitSet) Len() uint {
return b.length
}
// extendSet adds additional words to incorporate new bits if needed
func (b *BitSet) extendSet(i uint) {
if i >= Cap() {
panic("You are exceeding the capacity")
}
nsize := wordsNeeded(i + 1)
if b.set == nil {
b.set = make([]uint64, nsize)
} else if cap(b.set) >= nsize {
b.set = b.set[:nsize] // fast resize
} else if len(b.set) < nsize {
newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
copy(newset, b.set)
b.set = newset
}
b.length = i + 1
}
// Test whether bit i is set.
func (b *BitSet) Test(i uint) bool {
if i >= b.length {
return false
}
return b.set[i>>log2WordSize]&(1<<wordsIndex(i)) != 0
}
// GetWord64AtBit retrieves bits i through i+63 as a single uint64 value
func (b *BitSet) GetWord64AtBit(i uint) uint64 {
firstWordIndex := int(i >> log2WordSize)
subWordIndex := wordsIndex(i)
// The word that the index falls within, shifted so the index is at bit 0
var firstWord, secondWord uint64
if firstWordIndex < len(b.set) {
firstWord = b.set[firstWordIndex] >> subWordIndex
}
// The next word, masked to only include the necessary bits and shifted to cover the
// top of the word
if (firstWordIndex + 1) < len(b.set) {
secondWord = b.set[firstWordIndex+1] << uint64(wordSize-subWordIndex)
}
return firstWord | secondWord
}
// Set bit i to 1, the capacity of the bitset is automatically
// increased accordingly.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
// The memory usage is at least slightly over i/8 bytes.
func (b *BitSet) Set(i uint) *BitSet {
if i >= b.length { // if we need more bits, make 'em
b.extendSet(i)
}
b.set[i>>log2WordSize] |= 1 << wordsIndex(i)
return b
}
// Clear bit i to 0. This never cause a memory allocation. It is always safe.
func (b *BitSet) Clear(i uint) *BitSet {
if i >= b.length {
return b
}
b.set[i>>log2WordSize] &^= 1 << wordsIndex(i)
return b
}
// SetTo sets bit i to value.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) SetTo(i uint, value bool) *BitSet {
if value {
return b.Set(i)
}
return b.Clear(i)
}
// Flip bit at i.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Flip(i uint) *BitSet {
if i >= b.length {
return b.Set(i)
}
b.set[i>>log2WordSize] ^= 1 << wordsIndex(i)
return b
}
// FlipRange bit in [start, end).
// Warning: using a very large value for 'end'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) FlipRange(start, end uint) *BitSet {
if start >= end {
return b
}
if end-1 >= b.length { // if we need more bits, make 'em
b.extendSet(end - 1)
}
startWord := int(start >> log2WordSize)
endWord := int(end >> log2WordSize)
// b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
// e.g:
// start = 71,
// startWord = 1
// wordsIndex(start) = 71 % 64 = 7
// (^uint64(0) << 7) = 0b111111....11110000000
//
// mask = ^(^uint64(0) << 7) = 0b000000....00001111111
//
// flips the first 7 bits in b.set[1] and
// in the range loop, the b.set[1] gets again flipped
// so the two expressions flip results in a flip
// in b.set[1] from [7,63]
//
// handle startWord special, get's reflipped in range loop
b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
for idx := range b.set[startWord:endWord] {
b.set[startWord+idx] = ^b.set[startWord+idx]
}
// handle endWord special
// e.g.
// end = 135
// endWord = 2
//
// wordsIndex(-7) = 57
// see the golang spec:
// "For unsigned integer values, the operations +, -, *, and << are computed
// modulo 2n, where n is the bit width of the unsigned integer's type."
//
// mask = ^uint64(0) >> 57 = 0b00000....0001111111
//
// flips in b.set[2] from [0,7]
//
// is end at word boundary?
if idx := wordsIndex(-end); idx != 0 {
b.set[endWord] ^= ^uint64(0) >> wordsIndex(idx)
}
return b
}
// Shrink shrinks BitSet so that the provided value is the last possible
// set value. It clears all bits > the provided index and reduces the size
// and length of the set.
//
// Note that the parameter value is not the new length in bits: it is the
// maximal value that can be stored in the bitset after the function call.
// The new length in bits is the parameter value + 1. Thus it is not possible
// to use this function to set the length to 0, the minimal value of the length
// after this function call is 1.
//
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
length := lastbitindex + 1
idx := wordsNeeded(length)
if idx > len(b.set) {
return b
}
shrunk := make([]uint64, idx)
copy(shrunk, b.set[:idx])
b.set = shrunk
b.length = length
lastWordUsedBits := length % 64
if lastWordUsedBits != 0 {
b.set[idx-1] &= allBits >> uint64(64-wordsIndex(lastWordUsedBits))
}
return b
}
// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
// memory usage. Compact calls Shrink.
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Compact() *BitSet {
idx := len(b.set) - 1
for ; idx >= 0 && b.set[idx] == 0; idx-- {
}
newlength := uint((idx + 1) << log2WordSize)
if newlength >= b.length {
return b // nothing to do
}
if newlength > 0 {
return b.Shrink(newlength - 1)
}
// We preserve one word
return b.Shrink(63)
}
// InsertAt takes an index which indicates where a bit should be
// inserted. Then it shifts all the bits in the set to the left by 1, starting
// from the given index position, and sets the index position to 0.
//
// Depending on the size of your BitSet, and where you are inserting the new entry,
// this method could be extremely slow and in some cases might cause the entire BitSet
// to be recopied.
func (b *BitSet) InsertAt(idx uint) *BitSet {
insertAtElement := idx >> log2WordSize
// if length of set is a multiple of wordSize we need to allocate more space first
if b.isLenExactMultiple() {
b.set = append(b.set, uint64(0))
}
var i uint
for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
// all elements above the position where we want to insert can simply by shifted
b.set[i] <<= 1
// we take the most significant bit of the previous element and set it as
// the least significant bit of the current element
b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
}
// generate a mask to extract the data that we need to shift left
// within the element where we insert a bit
dataMask := uint64(1)<<uint64(wordsIndex(idx)) - 1
// extract that data that we'll shift
data := b.set[i] & (^dataMask)
// set the positions of the data mask to 0 in the element where we insert
b.set[i] &= dataMask
// shift data mask to the left and insert its data to the slice element
b.set[i] |= data << 1
// add 1 to length of BitSet
b.length++
return b
}
// String creates a string representation of the BitSet. It is only intended for
// human-readable output and not for serialization.
func (b *BitSet) String() string {
// follows code from https://github.com/RoaringBitmap/roaring
var buffer bytes.Buffer
start := []byte("{")
buffer.Write(start)
counter := 0
i, e := b.NextSet(0)
for e {
counter = counter + 1
// to avoid exhausting the memory
if counter > 0x40000 {
buffer.WriteString("...")
break
}
buffer.WriteString(strconv.FormatInt(int64(i), 10))
i, e = b.NextSet(i + 1)
if e {
buffer.WriteString(",")
}
}
buffer.WriteString("}")
return buffer.String()
}
// DeleteAt deletes the bit at the given index position from
// within the bitset
// All the bits residing on the left of the deleted bit get
// shifted right by 1
// The running time of this operation may potentially be
// relatively slow, O(length)
func (b *BitSet) DeleteAt(i uint) *BitSet {
// the index of the slice element where we'll delete a bit
deleteAtElement := i >> log2WordSize
// generate a mask for the data that needs to be shifted right
// within that slice element that gets modified
dataMask := ^((uint64(1) << wordsIndex(i)) - 1)
// extract the data that we'll shift right from the slice element
data := b.set[deleteAtElement] & dataMask
// set the masked area to 0 while leaving the rest as it is
b.set[deleteAtElement] &= ^dataMask
// shift the previously extracted data to the right and then
// set it in the previously masked area
b.set[deleteAtElement] |= (data >> 1) & dataMask
// loop over all the consecutive slice elements to copy each
// lowest bit into the highest position of the previous element,
// then shift the entire content to the right by 1
for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
b.set[i-1] |= (b.set[i] & 1) << 63
b.set[i] >>= 1
}
b.length = b.length - 1
return b
}
// AppendTo appends all set bits to buf and returns the (maybe extended) buf.
// In case of allocation failure, the function will panic.
//
// See also [BitSet.AsSlice] and [BitSet.NextSetMany].
func (b *BitSet) AppendTo(buf []uint) []uint {
// In theory, we could overflow uint, but in practice, we will not.
for idx, word := range b.set {
for word != 0 {
// In theory idx<<log2WordSize could overflow, but it will not overflow
// in practice.
buf = append(buf, uint(idx<<log2WordSize+bits.TrailingZeros64(word)))
// clear the rightmost set bit
word &= word - 1
}
}
return buf
}
// AsSlice returns all set bits as slice.
// It panics if the capacity of buf is < b.Count()
//
// See also [BitSet.AppendTo] and [BitSet.NextSetMany].
func (b *BitSet) AsSlice(buf []uint) []uint {
buf = buf[:cap(buf)] // len = cap
size := 0
for idx, word := range b.set {
for ; word != 0; size++ {
// panics if capacity of buf is exceeded.
// In theory idx<<log2WordSize could overflow, but it will not overflow
// in practice.
buf[size] = uint(idx<<log2WordSize + bits.TrailingZeros64(word))
// clear the rightmost set bit
word &= word - 1
}
}
buf = buf[:size]
return buf
}
// NextSet returns the next bit set from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no set bit found)
// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
//
// Users concerned with performance may want to use NextSetMany to
// retrieve several values at once.
func (b *BitSet) NextSet(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
// process first (partial) word
word := b.set[x] >> wordsIndex(i)
if word != 0 {
return i + uint(bits.TrailingZeros64(word)), true
}
// process the following full words until next bit is set
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
if word != 0 {
return uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word)), true
}
}
return 0, false
}
// NextSetMany returns many next bit sets from the specified index,
// including possibly the current index and up to cap(buffer).
// If the returned slice has len zero, then no more set bits were found
//
// buffer := make([]uint, 256) // this should be reused
// j := uint(0)
// j, buffer = bitmap.NextSetMany(j, buffer)
// for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
// for k := range buffer {
// do something with buffer[k]
// }
// j += 1
// }
//
// It is possible to retrieve all set bits as follow:
//
// indices := make([]uint, bitmap.Count())
// bitmap.NextSetMany(0, indices)
//
// It is also possible to retrieve all set bits with [BitSet.AppendTo]
// or [BitSet.AsSlice].
//
// However if Count() is large, it might be preferable to
// use several calls to NextSetMany for memory reasons.
func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
// In theory, we could overflow uint, but in practice, we will not.
capacity := cap(buffer)
result := buffer[:capacity]
x := int(i >> log2WordSize)
if x >= len(b.set) || capacity == 0 {
return 0, result[:0]
}
// process first (partial) word
word := b.set[x] >> wordsIndex(i)
size := 0
for word != 0 {
result[size] = i + uint(bits.TrailingZeros64(word))
size++
if size == capacity {
return result[size-1], result[:size]
}
// clear the rightmost set bit
word &= word - 1
}
// process the following full words
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
for word != 0 {
result[size] = uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word))
size++
if size == capacity {
return result[size-1], result[:size]
}
// clear the rightmost set bit
word &= word - 1
}
}
if size > 0 {
return result[size-1], result[:size]
}
return 0, result[:0]
}
// NextClear returns the next clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are set)
func (b *BitSet) NextClear(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
// process first (maybe partial) word
word := b.set[x]
word = word >> wordsIndex(i)
wordAll := allBits >> wordsIndex(i)
index := i + uint(bits.TrailingZeros64(^word))
if word != wordAll && index < b.length {
return index, true
}
// process the following full words until next bit is cleared
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
if word != allBits {
index = uint((x+idx)*wordSize + bits.TrailingZeros64(^word))
if index < b.length {
return index, true
}
}
}
return 0, false
}
// PreviousSet returns the previous set bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are clear)
func (b *BitSet) PreviousSet(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
word := b.set[x]
// Clear the bits above the index
word = word & ((1 << (wordsIndex(i) + 1)) - 1)
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
for x--; x >= 0; x-- {
word = b.set[x]
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
}
return 0, false
}
// PreviousClear returns the previous clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no clear bit found i.e. all bits are set)
func (b *BitSet) PreviousClear(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
word := b.set[x]
// Flip all bits and find the highest one bit
word = ^word
// Clear the bits above the index
word = word & ((1 << (wordsIndex(i) + 1)) - 1)
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
for x--; x >= 0; x-- {
word = b.set[x]
word = ^word
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
}
return 0, false
}
// ClearAll clears the entire BitSet.
// It does not free the memory.
func (b *BitSet) ClearAll() *BitSet {
if b != nil && b.set != nil {
for i := range b.set {
b.set[i] = 0
}
}
return b
}
// SetAll sets the entire BitSet
func (b *BitSet) SetAll() *BitSet {
if b != nil && b.set != nil {
for i := range b.set {
b.set[i] = allBits
}
b.cleanLastWord()
}
return b
}
// wordCount returns the number of words used in a bit set
func (b *BitSet) wordCount() int {
return wordsNeededUnbound(b.length)
}
// Clone this BitSet, returning a new BitSet that has the same bits set.
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Clone() *BitSet {
c := New(b.length)
if b.set != nil { // Clone should not modify current object
copy(c.set, b.set)
}
return c
}
// Copy into a destination BitSet using the Go array copy semantics:
// the number of bits copied is the minimum of the number of bits in the current
// BitSet (Len()) and the destination Bitset.
// We return the number of bits copied in the destination BitSet.
func (b *BitSet) Copy(c *BitSet) (count uint) {
if c == nil {
return
}
if b.set != nil { // Copy should not modify current object
copy(c.set, b.set)
}
count = c.length
if b.length < c.length {
count = b.length
}
// Cleaning the last word is needed to keep the invariant that other functions, such as Count, require
// that any bits in the last word that would exceed the length of the bitmask are set to 0.
c.cleanLastWord()
return
}
// CopyFull copies into a destination BitSet such that the destination is
// identical to the source after the operation, allocating memory if necessary.
func (b *BitSet) CopyFull(c *BitSet) {
if c == nil {
return
}
c.length = b.length
if len(b.set) == 0 {
if c.set != nil {
c.set = c.set[:0]
}
} else {
if cap(c.set) < len(b.set) {
c.set = make([]uint64, len(b.set))
} else {
c.set = c.set[:len(b.set)]
}
copy(c.set, b.set)
}
}
// Count (number of set bits).
// Also known as "popcount" or "population count".
func (b *BitSet) Count() uint {
if b != nil && b.set != nil {
return uint(popcntSlice(b.set))
}
return 0
}
// Equal tests the equivalence of two BitSets.
// False if they are of different sizes, otherwise true
// only if all the same bits are set
func (b *BitSet) Equal(c *BitSet) bool {
if c == nil || b == nil {
return c == b
}
if b.length != c.length {
return false
}
if b.length == 0 { // if they have both length == 0, then could have nil set
return true
}
wn := b.wordCount()
// bounds check elimination
if wn <= 0 {
return true
}
_ = b.set[wn-1]
_ = c.set[wn-1]
for p := 0; p < wn; p++ {
if c.set[p] != b.set[p] {
return false
}
}
return true
}
func panicIfNull(b *BitSet) {
if b == nil {
panic(Error("BitSet must not be null"))
}
}
// Difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
result = b.Clone() // clone b (in case b is bigger than compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
for i := 0; i < l; i++ {
result.set[i] = b.set[i] &^ compare.set[i]
}
return
}
// DifferenceCardinality computes the cardinality of the difference
func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
cnt := uint64(0)
cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
cnt += popcntSlice(b.set[l:])
return uint(cnt)
}
// InPlaceDifference computes the difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) InPlaceDifference(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if l <= 0 {
return
}
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] &^= cmpData[i]
}
}
// Convenience function: return two bitsets ordered by
// increasing length. Note: neither can be nil
func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
if a.length <= b.length {
ap, bp = a, b
} else {
ap, bp = b, a
}
return
}
// Intersection of base set and other set
// This is the BitSet equivalent of & (and)
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
result = New(b.length)
for i, word := range b.set {
result.set[i] = word & compare.set[i]
}
return
}
// IntersectionCardinality computes the cardinality of the intersection
func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntAndSlice(b.set, compare.set)
return uint(cnt)
}
// InPlaceIntersection destructively computes the intersection of
// base set and the compare set.
// This is the BitSet equivalent of & (and)
func (b *BitSet) InPlaceIntersection(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if l > 0 {
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] &= cmpData[i]
}
}
if l >= 0 {
for i := l; i < len(b.set); i++ {
b.set[i] = 0
}
}
if compare.length > 0 {
if compare.length-1 >= b.length {
b.extendSet(compare.length - 1)
}
}
}
// Union of base set and other set
// This is the BitSet equivalent of | (or)
func (b *BitSet) Union(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
result = compare.Clone()
for i, word := range b.set {
result.set[i] = word | compare.set[i]
}
return
}
// UnionCardinality computes the cardinality of the uniton of the base set
// and the compare set.
func (b *BitSet) UnionCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntOrSlice(b.set, compare.set)
if len(compare.set) > len(b.set) {
cnt += popcntSlice(compare.set[len(b.set):])
}
return uint(cnt)
}
// InPlaceUnion creates the destructive union of base set and compare set.
// This is the BitSet equivalent of | (or).
func (b *BitSet) InPlaceUnion(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if compare.length > 0 && compare.length-1 >= b.length {
b.extendSet(compare.length - 1)
}
if l > 0 {
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] |= cmpData[i]
}
}
if len(compare.set) > l {
for i := l; i < len(compare.set); i++ {
b.set[i] = compare.set[i]
}
}
}
// SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) SymmetricDifference(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
// compare is bigger, so clone it
result = compare.Clone()
for i, word := range b.set {
result.set[i] = word ^ compare.set[i]
}
return
}
// SymmetricDifferenceCardinality computes the cardinality of the symmetric difference
func (b *BitSet) SymmetricDifferenceCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntXorSlice(b.set, compare.set)
if len(compare.set) > len(b.set) {
cnt += popcntSlice(compare.set[len(b.set):])
}
return uint(cnt)
}
// InPlaceSymmetricDifference creates the destructive SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) InPlaceSymmetricDifference(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if compare.length > 0 && compare.length-1 >= b.length {
b.extendSet(compare.length - 1)
}
if l > 0 {
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] ^= cmpData[i]
}
}
if len(compare.set) > l {
for i := l; i < len(compare.set); i++ {
b.set[i] = compare.set[i]
}
}
}
// Is the length an exact multiple of word sizes?
func (b *BitSet) isLenExactMultiple() bool {
return wordsIndex(b.length) == 0
}
// Clean last word by setting unused bits to 0
func (b *BitSet) cleanLastWord() {
if !b.isLenExactMultiple() {
b.set[len(b.set)-1] &= allBits >> (wordSize - wordsIndex(b.length))
}
}
// Complement computes the (local) complement of a bitset (up to length bits)
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Complement() (result *BitSet) {
panicIfNull(b)
result = New(b.length)
for i, word := range b.set {
result.set[i] = ^word
}
result.cleanLastWord()
return
}
// All returns true if all bits are set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) All() bool {
panicIfNull(b)
return b.Count() == b.length
}
// None returns true if no bit is set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) None() bool {
panicIfNull(b)
if b != nil && b.set != nil {
for _, word := range b.set {
if word > 0 {
return false
}
}
}
return true
}
// Any returns true if any bit is set, false otherwise
func (b *BitSet) Any() bool {
panicIfNull(b)
return !b.None()
}
// IsSuperSet returns true if this is a superset of the other set
func (b *BitSet) IsSuperSet(other *BitSet) bool {
l := other.wordCount()
if b.wordCount() < l {
l = b.wordCount()
}
for i, word := range other.set[:l] {
if b.set[i]&word != word {
return false
}
}
return popcntSlice(other.set[l:]) == 0
}
// IsStrictSuperSet returns true if this is a strict superset of the other set
func (b *BitSet) IsStrictSuperSet(other *BitSet) bool {
return b.Count() > other.Count() && b.IsSuperSet(other)
}
// DumpAsBits dumps a bit set as a string of bits. Following the usual convention in Go,
// the least significant bits are printed last (index 0 is at the end of the string).
// This is useful for debugging and testing. It is not suitable for serialization.
func (b *BitSet) DumpAsBits() string {
if b.set == nil {
return "."
}
buffer := bytes.NewBufferString("")
i := len(b.set) - 1
for ; i >= 0; i-- {
fmt.Fprintf(buffer, "%064b.", b.set[i])
}
return buffer.String()
}
// BinaryStorageSize returns the binary storage requirements (see WriteTo) in bytes.
func (b *BitSet) BinaryStorageSize() int {
return wordBytes + wordBytes*b.wordCount()
}
func readUint64Array(reader io.Reader, data []uint64) error {
length := len(data)
bufferSize := 128
buffer := make([]byte, bufferSize*wordBytes)
for i := 0; i < length; i += bufferSize {
end := i + bufferSize
if end > length {
end = length
buffer = buffer[:wordBytes*(end-i)]
}
chunk := data[i:end]
if _, err := io.ReadFull(reader, buffer); err != nil {
return err
}
for i := range chunk {
chunk[i] = uint64(binaryOrder.Uint64(buffer[8*i:]))
}
}
return nil
}
func writeUint64Array(writer io.Writer, data []uint64) error {
bufferSize := 128
buffer := make([]byte, bufferSize*wordBytes)
for i := 0; i < len(data); i += bufferSize {
end := i + bufferSize
if end > len(data) {
end = len(data)
buffer = buffer[:wordBytes*(end-i)]
}
chunk := data[i:end]
for i, x := range chunk {
binaryOrder.PutUint64(buffer[8*i:], x)
}
_, err := writer.Write(buffer)
if err != nil {
return err
}
}
return nil
}
// WriteTo writes a BitSet to a stream. The format is:
// 1. uint64 length
// 2. []uint64 set
// The length is the number of bits in the BitSet.
//
// The set is a slice of uint64s containing between length and length + 63 bits.
// It is interpreted as a big-endian array of uint64s by default (see BinaryOrder())
// meaning that the first 8 bits are stored at byte index 7, the next 8 bits are stored
// at byte index 6... the bits 64 to 71 are stored at byte index 8, etc.
// If you change the binary order, you need to do so for both reading and writing.
// We recommend using the default binary order.
//
// Upon success, the number of bytes written is returned.
//
// Performance: if this function is used to write to a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Writer.
// E.g.,
//
// f, err := os.Create("myfile")
// w := bufio.NewWriter(f)
func (b *BitSet) WriteTo(stream io.Writer) (int64, error) {
length := uint64(b.length)
// Write length
err := binary.Write(stream, binaryOrder, &length)
if err != nil {
// Upon failure, we do not guarantee that we
// return the number of bytes written.
return int64(0), err
}
err = writeUint64Array(stream, b.set[:b.wordCount()])
if err != nil {
// Upon failure, we do not guarantee that we
// return the number of bytes written.
return int64(wordBytes), err
}
return int64(b.BinaryStorageSize()), nil
}
// ReadFrom reads a BitSet from a stream written using WriteTo
// The format is:
// 1. uint64 length
// 2. []uint64 set
// See WriteTo for details.
// Upon success, the number of bytes read is returned.
// If the current BitSet is not large enough to hold the data,
// it is extended. In case of error, the BitSet is either
// left unchanged or made empty if the error occurs too late
// to preserve the content.
//
// Performance: if this function is used to read from a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Reader.
// E.g.,
//
// f, err := os.Open("myfile")
// r := bufio.NewReader(f)
func (b *BitSet) ReadFrom(stream io.Reader) (int64, error) {
var length uint64
err := binary.Read(stream, binaryOrder, &length)
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return 0, err
}
newlength := uint(length)
if uint64(newlength) != length {
return 0, errors.New("unmarshalling error: type mismatch")
}
nWords := wordsNeeded(uint(newlength))
if cap(b.set) >= nWords {
b.set = b.set[:nWords]
} else {
b.set = make([]uint64, nWords)
}
b.length = newlength
err = readUint64Array(stream, b.set)
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
// We do not want to leave the BitSet partially filled as
// it is error prone.
b.set = b.set[:0]
b.length = 0
return 0, err
}
return int64(b.BinaryStorageSize()), nil
}
// MarshalBinary encodes a BitSet into a binary form and returns the result.
// Please see WriteTo for details.
func (b *BitSet) MarshalBinary() ([]byte, error) {
var buf bytes.Buffer
_, err := b.WriteTo(&buf)
if err != nil {
return []byte{}, err
}
return buf.Bytes(), err
}
// UnmarshalBinary decodes the binary form generated by MarshalBinary.
// Please see WriteTo for details.
func (b *BitSet) UnmarshalBinary(data []byte) error {
buf := bytes.NewReader(data)
_, err := b.ReadFrom(buf)
return err
}
// MarshalJSON marshals a BitSet as a JSON structure
func (b BitSet) MarshalJSON() ([]byte, error) {
buffer := bytes.NewBuffer(make([]byte, 0, b.BinaryStorageSize()))
_, err := b.WriteTo(buffer)
if err != nil {
return nil, err
}
// URLEncode all bytes
return json.Marshal(base64Encoding.EncodeToString(buffer.Bytes()))
}
// UnmarshalJSON unmarshals a BitSet from JSON created using MarshalJSON
func (b *BitSet) UnmarshalJSON(data []byte) error {
// Unmarshal as string
var s string
err := json.Unmarshal(data, &s)
if err != nil {
return err
}
// URLDecode string
buf, err := base64Encoding.DecodeString(s)
if err != nil {
return err
}
_, err = b.ReadFrom(bytes.NewReader(buf))
return err
}
// Rank returns the number of set bits up to and including the index
// that are set in the bitset.
// See https://en.wikipedia.org/wiki/Ranking#Ranking_in_statistics
func (b *BitSet) Rank(index uint) (rank uint) {
index++ // Rank is up to and including
// needed more than once
length := len(b.set)
// TODO: built-in min requires go1.21 or later
// idx := min(int(index>>6), len(b.set))
idx := int(index >> 6)
if idx > length {
idx = length
}
// sum up the popcounts until idx ...
// TODO: cannot range over idx (...): requires go1.22 or later
// for j := range idx {
for j := 0; j < idx; j++ {
if w := b.set[j]; w != 0 {
rank += uint(bits.OnesCount64(w))
}
}
// ... plus partial word at idx,
// make Rank inlineable and faster in the end
// don't test index&63 != 0, just add, less branching
if idx < length {
rank += uint(bits.OnesCount64(b.set[idx] << (64 - index&63)))
}
return
}
// Select returns the index of the jth set bit, where j is the argument.
// The caller is responsible to ensure that 0 <= j < Count(): when j is
// out of range, the function returns the length of the bitset (b.length).
//
// Note that this function differs in convention from the Rank function which
// returns 1 when ranking the smallest value. We follow the conventional
// textbook definition of Select and Rank.
func (b *BitSet) Select(index uint) uint {
leftover := index
for idx, word := range b.set {
w := uint(bits.OnesCount64(word))
if w > leftover {
return uint(idx)*64 + select64(word, leftover)
}
leftover -= w
}
return b.length
}
// top detects the top bit set
func (b *BitSet) top() (uint, bool) {
for idx := len(b.set) - 1; idx >= 0; idx-- {
if word := b.set[idx]; word != 0 {
return uint(idx<<log2WordSize+bits.Len64(word)) - 1, true
}
}
return 0, false
}
// ShiftLeft shifts the bitset like << operation would do.
//
// Left shift may require bitset size extension. We try to avoid the
// unnecessary memory operations by detecting the leftmost set bit.
// The function will panic if shift causes excess of capacity.
func (b *BitSet) ShiftLeft(bits uint) {
panicIfNull(b)
if bits == 0 {
return
}
top, ok := b.top()
if !ok {
return
}
// capacity check
if top+bits < bits {
panic("You are exceeding the capacity")
}
// destination set
dst := b.set
// not using extendSet() to avoid unneeded data copying
nsize := wordsNeeded(top + bits)
if len(b.set) < nsize {
dst = make([]uint64, nsize)
}
if top+bits >= b.length {
b.length = top + bits + 1
}
pad, idx := top%wordSize, top>>log2WordSize
shift, pages := bits%wordSize, bits>>log2WordSize
if bits%wordSize == 0 { // happy case: just add pages
copy(dst[pages:nsize], b.set)
} else {
if pad+shift >= wordSize {
dst[idx+pages+1] = b.set[idx] >> (wordSize - shift)
}
for i := int(idx); i >= 0; i-- {
if i > 0 {
dst[i+int(pages)] = (b.set[i] << shift) | (b.set[i-1] >> (wordSize - shift))
} else {
dst[i+int(pages)] = b.set[i] << shift
}
}
}
// zeroing extra pages
for i := 0; i < int(pages); i++ {
dst[i] = 0
}
b.set = dst
}
// ShiftRight shifts the bitset like >> operation would do.
func (b *BitSet) ShiftRight(bits uint) {
panicIfNull(b)
if bits == 0 {
return
}
top, ok := b.top()
if !ok {
return
}
if bits >= top {
b.set = make([]uint64, wordsNeeded(b.length))
return
}
pad, idx := top%wordSize, top>>log2WordSize
shift, pages := bits%wordSize, bits>>log2WordSize
if bits%wordSize == 0 { // happy case: just clear pages
b.set = b.set[pages:]
b.length -= pages * wordSize
} else {
for i := 0; i <= int(idx-pages); i++ {
if i < int(idx-pages) {
b.set[i] = (b.set[i+int(pages)] >> shift) | (b.set[i+int(pages)+1] << (wordSize - shift))
} else {
b.set[i] = b.set[i+int(pages)] >> shift
}
}
if pad < shift {
b.set[int(idx-pages)] = 0
}
}
for i := int(idx-pages) + 1; i <= int(idx); i++ {
b.set[i] = 0
}
}
// OnesBetween returns the number of set bits in the range [from, to).
// The range is inclusive of 'from' and exclusive of 'to'.
// Returns 0 if from >= to.
func (b *BitSet) OnesBetween(from, to uint) uint {
panicIfNull(b)
if from >= to {
return 0
}
// Calculate indices and masks for the starting and ending words
startWord := from >> log2WordSize // Divide by wordSize
endWord := to >> log2WordSize
startOffset := from & wordMask // Mod wordSize
endOffset := to & wordMask
// Case 1: Bits lie within a single word
if startWord == endWord {
// Create mask for bits between from and to
mask := uint64((1<<endOffset)-1) &^ ((1 << startOffset) - 1)
return uint(bits.OnesCount64(b.set[startWord] & mask))
}
var count uint
// Case 2: Bits span multiple words
// 2a: Count bits in first word (from startOffset to end of word)
startMask := ^uint64((1 << startOffset) - 1) // Mask for bits >= startOffset
count = uint(bits.OnesCount64(b.set[startWord] & startMask))
// 2b: Count all bits in complete words between start and end
if endWord > startWord+1 {
count += uint(popcntSlice(b.set[startWord+1 : endWord]))
}
// 2c: Count bits in last word (from start of word to endOffset)
if endOffset > 0 {
endMask := uint64(1<<endOffset) - 1 // Mask for bits < endOffset
count += uint(bits.OnesCount64(b.set[endWord] & endMask))
}
return count
}
// Extract extracts bits according to a mask and returns the result
// in a new BitSet. See ExtractTo for details.
func (b *BitSet) Extract(mask *BitSet) *BitSet {
dst := New(mask.Count())
b.ExtractTo(mask, dst)
return dst
}
// ExtractTo copies bits from the BitSet using positions specified in mask
// into a compacted form in dst. The number of set bits in mask determines
// the number of bits that will be extracted.
//
// For example, if mask has bits set at positions 1,4,5, then ExtractTo will
// take bits at those positions from the source BitSet and pack them into
// consecutive positions 0,1,2 in the destination BitSet.
func (b *BitSet) ExtractTo(mask *BitSet, dst *BitSet) {
panicIfNull(b)
panicIfNull(mask)
panicIfNull(dst)
if len(mask.set) == 0 || len(b.set) == 0 {
return
}
// Ensure destination has enough space for extracted bits
resultBits := uint(popcntSlice(mask.set))
if dst.length < resultBits {
dst.extendSet(resultBits - 1)
}
outPos := uint(0)
length := len(mask.set)
if len(b.set) < length {
length = len(b.set)
}
// Process each word
for i := 0; i < length; i++ {
if mask.set[i] == 0 {
continue // Skip words with no bits to extract
}
// Extract and compact bits according to mask
extracted := pext(b.set[i], mask.set[i])
bitsExtracted := uint(bits.OnesCount64(mask.set[i]))
// Calculate destination position
wordIdx := outPos >> log2WordSize
bitOffset := outPos & wordMask
// Write extracted bits, handling word boundary crossing
dst.set[wordIdx] |= extracted << bitOffset
if bitOffset+bitsExtracted > wordSize {
dst.set[wordIdx+1] = extracted >> (wordSize - bitOffset)
}
outPos += bitsExtracted
}
}
// Deposit creates a new BitSet and deposits bits according to a mask.
// See DepositTo for details.
func (b *BitSet) Deposit(mask *BitSet) *BitSet {
dst := New(mask.length)
b.DepositTo(mask, dst)
return dst
}
// DepositTo spreads bits from a compacted form in the BitSet into positions
// specified by mask in dst. This is the inverse operation of Extract.
//
// For example, if mask has bits set at positions 1,4,5, then DepositTo will
// take consecutive bits 0,1,2 from the source BitSet and place them into
// positions 1,4,5 in the destination BitSet.
func (b *BitSet) DepositTo(mask *BitSet, dst *BitSet) {
panicIfNull(b)
panicIfNull(mask)
panicIfNull(dst)
if len(dst.set) == 0 || len(mask.set) == 0 || len(b.set) == 0 {
return
}
inPos := uint(0)
length := len(mask.set)
if len(dst.set) < length {
length = len(dst.set)
}
// Process each word
for i := 0; i < length; i++ {
if mask.set[i] == 0 {
continue // Skip words with no bits to deposit
}
// Calculate source word index
wordIdx := inPos >> log2WordSize
if wordIdx >= uint(len(b.set)) {
break // No more source bits available
}
// Get source bits, handling word boundary crossing
sourceBits := b.set[wordIdx]
bitOffset := inPos & wordMask
if wordIdx+1 < uint(len(b.set)) && bitOffset != 0 {
// Combine bits from current and next word
sourceBits = (sourceBits >> bitOffset) |
(b.set[wordIdx+1] << (wordSize - bitOffset))
} else {
sourceBits >>= bitOffset
}
// Deposit bits according to mask
dst.set[i] = (dst.set[i] &^ mask.set[i]) | pdep(sourceBits, mask.set[i])
inPos += uint(bits.OnesCount64(mask.set[i]))
}
}
//go:generate go run cmd/pextgen/main.go -pkg=bitset
func pext(w, m uint64) (result uint64) {
var outPos uint
// Process byte by byte
for i := 0; i < 8; i++ {
shift := i << 3 // i * 8 using bit shift
b := uint8(w >> shift)
mask := uint8(m >> shift)
extracted := pextLUT[b][mask]
bits := popLUT[mask]
result |= uint64(extracted) << outPos
outPos += uint(bits)
}
return result
}
func pdep(w, m uint64) (result uint64) {
var inPos uint
// Process byte by byte
for i := 0; i < 8; i++ {
shift := i << 3 // i * 8 using bit shift
mask := uint8(m >> shift)
bits := popLUT[mask]
// Get the bits we'll deposit from the source
b := uint8(w >> inPos)
// Deposit them according to the mask for this byte
deposited := pdepLUT[b][mask]
// Add to result
result |= uint64(deposited) << shift
inPos += uint(bits)
}
return result
}
|