File: bitset.go

package info (click to toggle)
golang-github-bits-and-blooms-bitset 1.22.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 760 kB
  • sloc: makefile: 3
file content (1756 lines) | stat: -rw-r--r-- 47,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
/*
Package bitset implements bitsets, a mapping
between non-negative integers and boolean values. It should be more
efficient than map[uint] bool.

It provides methods for setting, clearing, flipping, and testing
individual integers.

But it also provides set intersection, union, difference,
complement, and symmetric operations, as well as tests to
check whether any, all, or no bits are set, and querying a
bitset's current length and number of positive bits.

BitSets are expanded to the size of the largest set bit; the
memory allocation is approximately Max bits, where Max is
the largest set bit. BitSets are never shrunk. On creation,
a hint can be given for the number of bits that will be used.

Many of the methods, including Set,Clear, and Flip, return
a BitSet pointer, which allows for chaining.

Example use:

	import "bitset"
	var b BitSet
	b.Set(10).Set(11)
	if b.Test(1000) {
		b.Clear(1000)
	}
	if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
		fmt.Println("Intersection works.")
	}

As an alternative to BitSets, one should check out the 'big' package,
which provides a (less set-theoretical) view of bitsets.
*/
package bitset

import (
	"bytes"
	"encoding/base64"
	"encoding/binary"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"math/bits"
	"strconv"
)

// the wordSize of a bit set
const wordSize = 64

// the wordSize of a bit set in bytes
const wordBytes = wordSize / 8

// wordMask is wordSize-1, used for bit indexing in a word
const wordMask = wordSize - 1

// log2WordSize is lg(wordSize)
const log2WordSize = 6

// allBits has every bit set
const allBits uint64 = 0xffffffffffffffff

// default binary BigEndian
var binaryOrder binary.ByteOrder = binary.BigEndian

// default json encoding base64.URLEncoding
var base64Encoding = base64.URLEncoding

// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
func Base64StdEncoding() { base64Encoding = base64.StdEncoding }

// LittleEndian sets Marshal/Unmarshal Binary as Little Endian (Default: binary.BigEndian)
func LittleEndian() { binaryOrder = binary.LittleEndian }

// BigEndian sets Marshal/Unmarshal Binary as Big Endian (Default: binary.BigEndian)
func BigEndian() { binaryOrder = binary.BigEndian }

// BinaryOrder returns the current binary order, see also LittleEndian()
// and BigEndian() to change the order.
func BinaryOrder() binary.ByteOrder { return binaryOrder }

// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
type BitSet struct {
	length uint
	set    []uint64
}

// Error is used to distinguish errors (panics) generated in this package.
type Error string

// safeSet will fixup b.set to be non-nil and return the field value
func (b *BitSet) safeSet() []uint64 {
	if b.set == nil {
		b.set = make([]uint64, wordsNeeded(0))
	}
	return b.set
}

// SetBitsetFrom fills the bitset with an array of integers without creating a new BitSet instance
func (b *BitSet) SetBitsetFrom(buf []uint64) {
	b.length = uint(len(buf)) * 64
	b.set = buf
}

// From is a constructor used to create a BitSet from an array of words
func From(buf []uint64) *BitSet {
	return FromWithLength(uint(len(buf))*64, buf)
}

// FromWithLength constructs from an array of words and length in bits.
// This function is for advanced users, most users should prefer
// the From function.
// As a user of FromWithLength, you are responsible for ensuring
// that the length is correct: your slice should have length at
// least (length+63)/64 in 64-bit words.
func FromWithLength(length uint, set []uint64) *BitSet {
	if len(set) < wordsNeeded(length) {
		panic("BitSet.FromWithLength: slice is too short")
	}
	return &BitSet{length, set}
}

// Bytes returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
//
// Deprecated: Bytes is deprecated. Use [BitSet.Words] instead.
func (b *BitSet) Bytes() []uint64 {
	return b.set
}

// Words returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
func (b *BitSet) Words() []uint64 {
	return b.set
}

// wordsNeeded calculates the number of words needed for i bits
func wordsNeeded(i uint) int {
	if i > (Cap() - wordMask) {
		return int(Cap() >> log2WordSize)
	}
	return int((i + wordMask) >> log2WordSize)
}

// wordsNeededUnbound calculates the number of words needed for i bits, possibly exceeding the capacity.
// This function is useful if you know that the capacity cannot be exceeded (e.g., you have an existing BitSet).
func wordsNeededUnbound(i uint) int {
	return (int(i) + wordMask) >> log2WordSize
}

// wordsIndex calculates the index of words in a `uint64`
func wordsIndex(i uint) uint {
	return i & wordMask
}

// New creates a new BitSet with a hint that length bits will be required.
// The memory usage is at least length/8 bytes.
// In case of allocation failure, the function will return a BitSet with zero
// capacity.
func New(length uint) (bset *BitSet) {
	defer func() {
		if r := recover(); r != nil {
			bset = &BitSet{
				0,
				make([]uint64, 0),
			}
		}
	}()

	bset = &BitSet{
		length,
		make([]uint64, wordsNeeded(length)),
	}

	return bset
}

// MustNew creates a new BitSet with the given length bits.
// It panics if length exceeds the possible capacity or by a lack of memory.
func MustNew(length uint) (bset *BitSet) {
	if length >= Cap() {
		panic("You are exceeding the capacity")
	}

	return &BitSet{
		length,
		make([]uint64, wordsNeeded(length)), // may panic on lack of memory
	}
}

// Cap returns the total possible capacity, or number of bits
// that can be stored in the BitSet theoretically. Under 32-bit system,
// it is 4294967295 and under 64-bit system, it is 18446744073709551615.
// Note that this is further limited by the maximum allocation size in Go,
// and your available memory, as any Go data structure.
func Cap() uint {
	return ^uint(0)
}

// Len returns the number of bits in the BitSet.
// Note that it differ from Count function.
func (b *BitSet) Len() uint {
	return b.length
}

// extendSet adds additional words to incorporate new bits if needed
func (b *BitSet) extendSet(i uint) {
	if i >= Cap() {
		panic("You are exceeding the capacity")
	}
	nsize := wordsNeeded(i + 1)
	if b.set == nil {
		b.set = make([]uint64, nsize)
	} else if cap(b.set) >= nsize {
		b.set = b.set[:nsize] // fast resize
	} else if len(b.set) < nsize {
		newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
		copy(newset, b.set)
		b.set = newset
	}
	b.length = i + 1
}

// Test whether bit i is set.
func (b *BitSet) Test(i uint) bool {
	if i >= b.length {
		return false
	}
	return b.set[i>>log2WordSize]&(1<<wordsIndex(i)) != 0
}

// GetWord64AtBit retrieves bits i through i+63 as a single uint64 value
func (b *BitSet) GetWord64AtBit(i uint) uint64 {
	firstWordIndex := int(i >> log2WordSize)
	subWordIndex := wordsIndex(i)

	// The word that the index falls within, shifted so the index is at bit 0
	var firstWord, secondWord uint64
	if firstWordIndex < len(b.set) {
		firstWord = b.set[firstWordIndex] >> subWordIndex
	}

	// The next word, masked to only include the necessary bits and shifted to cover the
	// top of the word
	if (firstWordIndex + 1) < len(b.set) {
		secondWord = b.set[firstWordIndex+1] << uint64(wordSize-subWordIndex)
	}

	return firstWord | secondWord
}

// Set bit i to 1, the capacity of the bitset is automatically
// increased accordingly.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
// The memory usage is at least slightly over i/8 bytes.
func (b *BitSet) Set(i uint) *BitSet {
	if i >= b.length { // if we need more bits, make 'em
		b.extendSet(i)
	}
	b.set[i>>log2WordSize] |= 1 << wordsIndex(i)
	return b
}

// Clear bit i to 0. This never cause a memory allocation. It is always safe.
func (b *BitSet) Clear(i uint) *BitSet {
	if i >= b.length {
		return b
	}
	b.set[i>>log2WordSize] &^= 1 << wordsIndex(i)
	return b
}

// SetTo sets bit i to value.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) SetTo(i uint, value bool) *BitSet {
	if value {
		return b.Set(i)
	}
	return b.Clear(i)
}

// Flip bit at i.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Flip(i uint) *BitSet {
	if i >= b.length {
		return b.Set(i)
	}
	b.set[i>>log2WordSize] ^= 1 << wordsIndex(i)
	return b
}

// FlipRange bit in [start, end).
// Warning: using a very large value for 'end'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) FlipRange(start, end uint) *BitSet {
	if start >= end {
		return b
	}

	if end-1 >= b.length { // if we need more bits, make 'em
		b.extendSet(end - 1)
	}

	startWord := int(start >> log2WordSize)
	endWord := int(end >> log2WordSize)

	// b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
	//  e.g:
	//  start = 71,
	//  startWord = 1
	//  wordsIndex(start) = 71 % 64 = 7
	//   (^uint64(0) << 7) = 0b111111....11110000000
	//
	//  mask = ^(^uint64(0) << 7) = 0b000000....00001111111
	//
	// flips the first 7 bits in b.set[1] and
	// in the range loop, the b.set[1] gets again flipped
	// so the two expressions flip results in a flip
	// in b.set[1] from [7,63]
	//
	// handle startWord special, get's reflipped in range loop
	b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))

	for idx := range b.set[startWord:endWord] {
		b.set[startWord+idx] = ^b.set[startWord+idx]
	}

	// handle endWord special
	//  e.g.
	// end = 135
	//  endWord = 2
	//
	//  wordsIndex(-7) = 57
	//  see the golang spec:
	//   "For unsigned integer values, the operations +, -, *, and << are computed
	//   modulo 2n, where n is the bit width of the unsigned integer's type."
	//
	//   mask = ^uint64(0) >> 57 = 0b00000....0001111111
	//
	// flips in b.set[2] from [0,7]
	//
	// is end at word boundary?
	if idx := wordsIndex(-end); idx != 0 {
		b.set[endWord] ^= ^uint64(0) >> wordsIndex(idx)
	}

	return b
}

// Shrink shrinks BitSet so that the provided value is the last possible
// set value. It clears all bits > the provided index and reduces the size
// and length of the set.
//
// Note that the parameter value is not the new length in bits: it is the
// maximal value that can be stored in the bitset after the function call.
// The new length in bits is the parameter value + 1. Thus it is not possible
// to use this function to set the length to 0, the minimal value of the length
// after this function call is 1.
//
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
	length := lastbitindex + 1
	idx := wordsNeeded(length)
	if idx > len(b.set) {
		return b
	}
	shrunk := make([]uint64, idx)
	copy(shrunk, b.set[:idx])
	b.set = shrunk
	b.length = length
	lastWordUsedBits := length % 64
	if lastWordUsedBits != 0 {
		b.set[idx-1] &= allBits >> uint64(64-wordsIndex(lastWordUsedBits))
	}
	return b
}

// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
// memory usage. Compact calls Shrink.
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Compact() *BitSet {
	idx := len(b.set) - 1
	for ; idx >= 0 && b.set[idx] == 0; idx-- {
	}
	newlength := uint((idx + 1) << log2WordSize)
	if newlength >= b.length {
		return b // nothing to do
	}
	if newlength > 0 {
		return b.Shrink(newlength - 1)
	}
	// We preserve one word
	return b.Shrink(63)
}

// InsertAt takes an index which indicates where a bit should be
// inserted. Then it shifts all the bits in the set to the left by 1, starting
// from the given index position, and sets the index position to 0.
//
// Depending on the size of your BitSet, and where you are inserting the new entry,
// this method could be extremely slow and in some cases might cause the entire BitSet
// to be recopied.
func (b *BitSet) InsertAt(idx uint) *BitSet {
	insertAtElement := idx >> log2WordSize

	// if length of set is a multiple of wordSize we need to allocate more space first
	if b.isLenExactMultiple() {
		b.set = append(b.set, uint64(0))
	}

	var i uint
	for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
		// all elements above the position where we want to insert can simply by shifted
		b.set[i] <<= 1

		// we take the most significant bit of the previous element and set it as
		// the least significant bit of the current element
		b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
	}

	// generate a mask to extract the data that we need to shift left
	// within the element where we insert a bit
	dataMask := uint64(1)<<uint64(wordsIndex(idx)) - 1

	// extract that data that we'll shift
	data := b.set[i] & (^dataMask)

	// set the positions of the data mask to 0 in the element where we insert
	b.set[i] &= dataMask

	// shift data mask to the left and insert its data to the slice element
	b.set[i] |= data << 1

	// add 1 to length of BitSet
	b.length++

	return b
}

// String creates a string representation of the BitSet. It is only intended for
// human-readable output and not for serialization.
func (b *BitSet) String() string {
	// follows code from https://github.com/RoaringBitmap/roaring
	var buffer bytes.Buffer
	start := []byte("{")
	buffer.Write(start)
	counter := 0
	i, e := b.NextSet(0)
	for e {
		counter = counter + 1
		// to avoid exhausting the memory
		if counter > 0x40000 {
			buffer.WriteString("...")
			break
		}
		buffer.WriteString(strconv.FormatInt(int64(i), 10))
		i, e = b.NextSet(i + 1)
		if e {
			buffer.WriteString(",")
		}
	}
	buffer.WriteString("}")
	return buffer.String()
}

// DeleteAt deletes the bit at the given index position from
// within the bitset
// All the bits residing on the left of the deleted bit get
// shifted right by 1
// The running time of this operation may potentially be
// relatively slow, O(length)
func (b *BitSet) DeleteAt(i uint) *BitSet {
	// the index of the slice element where we'll delete a bit
	deleteAtElement := i >> log2WordSize

	// generate a mask for the data that needs to be shifted right
	// within that slice element that gets modified
	dataMask := ^((uint64(1) << wordsIndex(i)) - 1)

	// extract the data that we'll shift right from the slice element
	data := b.set[deleteAtElement] & dataMask

	// set the masked area to 0 while leaving the rest as it is
	b.set[deleteAtElement] &= ^dataMask

	// shift the previously extracted data to the right and then
	// set it in the previously masked area
	b.set[deleteAtElement] |= (data >> 1) & dataMask

	// loop over all the consecutive slice elements to copy each
	// lowest bit into the highest position of the previous element,
	// then shift the entire content to the right by 1
	for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
		b.set[i-1] |= (b.set[i] & 1) << 63
		b.set[i] >>= 1
	}

	b.length = b.length - 1

	return b
}

// AppendTo appends all set bits to buf and returns the (maybe extended) buf.
// In case of allocation failure, the function will panic.
//
// See also [BitSet.AsSlice] and [BitSet.NextSetMany].
func (b *BitSet) AppendTo(buf []uint) []uint {
	// In theory, we could overflow uint, but in practice, we will not.
	for idx, word := range b.set {
		for word != 0 {
			// In theory idx<<log2WordSize could overflow, but it will not overflow
			// in practice.
			buf = append(buf, uint(idx<<log2WordSize+bits.TrailingZeros64(word)))

			// clear the rightmost set bit
			word &= word - 1
		}
	}

	return buf
}

// AsSlice returns all set bits as slice.
// It panics if the capacity of buf is < b.Count()
//
// See also [BitSet.AppendTo] and [BitSet.NextSetMany].
func (b *BitSet) AsSlice(buf []uint) []uint {
	buf = buf[:cap(buf)] // len = cap

	size := 0
	for idx, word := range b.set {
		for ; word != 0; size++ {
			// panics if capacity of buf is exceeded.
			// In theory idx<<log2WordSize could overflow, but it will not overflow
			// in practice.
			buf[size] = uint(idx<<log2WordSize + bits.TrailingZeros64(word))

			// clear the rightmost set bit
			word &= word - 1
		}
	}

	buf = buf[:size]
	return buf
}

// NextSet returns the next bit set from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no set bit found)
// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
//
// Users concerned with performance may want to use NextSetMany to
// retrieve several values at once.
func (b *BitSet) NextSet(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}

	// process first (partial) word
	word := b.set[x] >> wordsIndex(i)
	if word != 0 {
		return i + uint(bits.TrailingZeros64(word)), true
	}

	// process the following full words until next bit is set
	// x < len(b.set), no out-of-bounds panic in following slice expression
	x++
	for idx, word := range b.set[x:] {
		if word != 0 {
			return uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word)), true
		}
	}

	return 0, false
}

// NextSetMany returns many next bit sets from the specified index,
// including possibly the current index and up to cap(buffer).
// If the returned slice has len zero, then no more set bits were found
//
//	buffer := make([]uint, 256) // this should be reused
//	j := uint(0)
//	j, buffer = bitmap.NextSetMany(j, buffer)
//	for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
//	 for k := range buffer {
//	  do something with buffer[k]
//	 }
//	 j += 1
//	}
//
// It is possible to retrieve all set bits as follow:
//
//	indices := make([]uint, bitmap.Count())
//	bitmap.NextSetMany(0, indices)
//
// It is also possible to retrieve all set bits with [BitSet.AppendTo]
// or [BitSet.AsSlice].
//
// However if Count() is large, it might be preferable to
// use several calls to NextSetMany for memory reasons.
func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
	// In theory, we could overflow uint, but in practice, we will not.
	capacity := cap(buffer)
	result := buffer[:capacity]

	x := int(i >> log2WordSize)
	if x >= len(b.set) || capacity == 0 {
		return 0, result[:0]
	}

	// process first (partial) word
	word := b.set[x] >> wordsIndex(i)

	size := 0
	for word != 0 {
		result[size] = i + uint(bits.TrailingZeros64(word))

		size++
		if size == capacity {
			return result[size-1], result[:size]
		}

		// clear the rightmost set bit
		word &= word - 1
	}

	// process the following full words
	// x < len(b.set), no out-of-bounds panic in following slice expression
	x++
	for idx, word := range b.set[x:] {
		for word != 0 {
			result[size] = uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word))

			size++
			if size == capacity {
				return result[size-1], result[:size]
			}

			// clear the rightmost set bit
			word &= word - 1
		}
	}

	if size > 0 {
		return result[size-1], result[:size]
	}
	return 0, result[:0]
}

// NextClear returns the next clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are set)
func (b *BitSet) NextClear(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}

	// process first (maybe partial) word
	word := b.set[x]
	word = word >> wordsIndex(i)
	wordAll := allBits >> wordsIndex(i)

	index := i + uint(bits.TrailingZeros64(^word))
	if word != wordAll && index < b.length {
		return index, true
	}

	// process the following full words until next bit is cleared
	// x < len(b.set), no out-of-bounds panic in following slice expression
	x++
	for idx, word := range b.set[x:] {
		if word != allBits {
			index = uint((x+idx)*wordSize + bits.TrailingZeros64(^word))
			if index < b.length {
				return index, true
			}
		}
	}

	return 0, false
}

// PreviousSet returns the previous set bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are clear)
func (b *BitSet) PreviousSet(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}
	word := b.set[x]

	// Clear the bits above the index
	word = word & ((1 << (wordsIndex(i) + 1)) - 1)
	if word != 0 {
		return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
	}

	for x--; x >= 0; x-- {
		word = b.set[x]
		if word != 0 {
			return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
		}
	}
	return 0, false
}

// PreviousClear returns the previous clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no clear bit found i.e. all bits are set)
func (b *BitSet) PreviousClear(i uint) (uint, bool) {
	x := int(i >> log2WordSize)
	if x >= len(b.set) {
		return 0, false
	}
	word := b.set[x]

	// Flip all bits and find the highest one bit
	word = ^word

	// Clear the bits above the index
	word = word & ((1 << (wordsIndex(i) + 1)) - 1)

	if word != 0 {
		return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
	}

	for x--; x >= 0; x-- {
		word = b.set[x]
		word = ^word
		if word != 0 {
			return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
		}
	}
	return 0, false
}

// ClearAll clears the entire BitSet.
// It does not free the memory.
func (b *BitSet) ClearAll() *BitSet {
	if b != nil && b.set != nil {
		for i := range b.set {
			b.set[i] = 0
		}
	}
	return b
}

// SetAll sets the entire BitSet
func (b *BitSet) SetAll() *BitSet {
	if b != nil && b.set != nil {
		for i := range b.set {
			b.set[i] = allBits
		}

		b.cleanLastWord()
	}
	return b
}

// wordCount returns the number of words used in a bit set
func (b *BitSet) wordCount() int {
	return wordsNeededUnbound(b.length)
}

// Clone this BitSet, returning a new BitSet that has the same bits set.
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Clone() *BitSet {
	c := New(b.length)
	if b.set != nil { // Clone should not modify current object
		copy(c.set, b.set)
	}
	return c
}

// Copy into a destination BitSet using the Go array copy semantics:
// the number of bits copied is the minimum of the number of bits in the current
// BitSet (Len()) and the destination Bitset.
// We return the number of bits copied in the destination BitSet.
func (b *BitSet) Copy(c *BitSet) (count uint) {
	if c == nil {
		return
	}
	if b.set != nil { // Copy should not modify current object
		copy(c.set, b.set)
	}
	count = c.length
	if b.length < c.length {
		count = b.length
	}
	// Cleaning the last word is needed to keep the invariant that other functions, such as Count, require
	// that any bits in the last word that would exceed the length of the bitmask are set to 0.
	c.cleanLastWord()
	return
}

// CopyFull copies into a destination BitSet such that the destination is
// identical to the source after the operation, allocating memory if necessary.
func (b *BitSet) CopyFull(c *BitSet) {
	if c == nil {
		return
	}
	c.length = b.length
	if len(b.set) == 0 {
		if c.set != nil {
			c.set = c.set[:0]
		}
	} else {
		if cap(c.set) < len(b.set) {
			c.set = make([]uint64, len(b.set))
		} else {
			c.set = c.set[:len(b.set)]
		}
		copy(c.set, b.set)
	}
}

// Count (number of set bits).
// Also known as "popcount" or "population count".
func (b *BitSet) Count() uint {
	if b != nil && b.set != nil {
		return uint(popcntSlice(b.set))
	}
	return 0
}

// Equal tests the equivalence of two BitSets.
// False if they are of different sizes, otherwise true
// only if all the same bits are set
func (b *BitSet) Equal(c *BitSet) bool {
	if c == nil || b == nil {
		return c == b
	}
	if b.length != c.length {
		return false
	}
	if b.length == 0 { // if they have both length == 0, then could have nil set
		return true
	}
	wn := b.wordCount()
	// bounds check elimination
	if wn <= 0 {
		return true
	}
	_ = b.set[wn-1]
	_ = c.set[wn-1]
	for p := 0; p < wn; p++ {
		if c.set[p] != b.set[p] {
			return false
		}
	}
	return true
}

func panicIfNull(b *BitSet) {
	if b == nil {
		panic(Error("BitSet must not be null"))
	}
}

// Difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	result = b.Clone() // clone b (in case b is bigger than compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	for i := 0; i < l; i++ {
		result.set[i] = b.set[i] &^ compare.set[i]
	}
	return
}

// DifferenceCardinality computes the cardinality of the difference
func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	cnt := uint64(0)
	cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
	cnt += popcntSlice(b.set[l:])
	return uint(cnt)
}

// InPlaceDifference computes the difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) InPlaceDifference(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	if l <= 0 {
		return
	}
	// bounds check elimination
	data, cmpData := b.set, compare.set
	_ = data[l-1]
	_ = cmpData[l-1]
	for i := 0; i < l; i++ {
		data[i] &^= cmpData[i]
	}
}

// Convenience function: return two bitsets ordered by
// increasing length. Note: neither can be nil
func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
	if a.length <= b.length {
		ap, bp = a, b
	} else {
		ap, bp = b, a
	}
	return
}

// Intersection of base set and other set
// This is the BitSet equivalent of & (and)
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	result = New(b.length)
	for i, word := range b.set {
		result.set[i] = word & compare.set[i]
	}
	return
}

// IntersectionCardinality computes the cardinality of the intersection
func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntAndSlice(b.set, compare.set)
	return uint(cnt)
}

// InPlaceIntersection destructively computes the intersection of
// base set and the compare set.
// This is the BitSet equivalent of & (and)
func (b *BitSet) InPlaceIntersection(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	if l > 0 {
		// bounds check elimination
		data, cmpData := b.set, compare.set
		_ = data[l-1]
		_ = cmpData[l-1]

		for i := 0; i < l; i++ {
			data[i] &= cmpData[i]
		}
	}
	if l >= 0 {
		for i := l; i < len(b.set); i++ {
			b.set[i] = 0
		}
	}
	if compare.length > 0 {
		if compare.length-1 >= b.length {
			b.extendSet(compare.length - 1)
		}
	}
}

// Union of base set and other set
// This is the BitSet equivalent of | (or)
func (b *BitSet) Union(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	result = compare.Clone()
	for i, word := range b.set {
		result.set[i] = word | compare.set[i]
	}
	return
}

// UnionCardinality computes the cardinality of the uniton of the base set
// and the compare set.
func (b *BitSet) UnionCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntOrSlice(b.set, compare.set)
	if len(compare.set) > len(b.set) {
		cnt += popcntSlice(compare.set[len(b.set):])
	}
	return uint(cnt)
}

// InPlaceUnion creates the destructive union of base set and compare set.
// This is the BitSet equivalent of | (or).
func (b *BitSet) InPlaceUnion(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	if compare.length > 0 && compare.length-1 >= b.length {
		b.extendSet(compare.length - 1)
	}
	if l > 0 {
		// bounds check elimination
		data, cmpData := b.set, compare.set
		_ = data[l-1]
		_ = cmpData[l-1]

		for i := 0; i < l; i++ {
			data[i] |= cmpData[i]
		}
	}
	if len(compare.set) > l {
		for i := l; i < len(compare.set); i++ {
			b.set[i] = compare.set[i]
		}
	}
}

// SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) SymmetricDifference(compare *BitSet) (result *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	// compare is bigger, so clone it
	result = compare.Clone()
	for i, word := range b.set {
		result.set[i] = word ^ compare.set[i]
	}
	return
}

// SymmetricDifferenceCardinality computes the cardinality of the symmetric difference
func (b *BitSet) SymmetricDifferenceCardinality(compare *BitSet) uint {
	panicIfNull(b)
	panicIfNull(compare)
	b, compare = sortByLength(b, compare)
	cnt := popcntXorSlice(b.set, compare.set)
	if len(compare.set) > len(b.set) {
		cnt += popcntSlice(compare.set[len(b.set):])
	}
	return uint(cnt)
}

// InPlaceSymmetricDifference creates the destructive SymmetricDifference of base set and other set
// This is the BitSet equivalent of ^ (xor)
func (b *BitSet) InPlaceSymmetricDifference(compare *BitSet) {
	panicIfNull(b)
	panicIfNull(compare)
	l := compare.wordCount()
	if l > b.wordCount() {
		l = b.wordCount()
	}
	if compare.length > 0 && compare.length-1 >= b.length {
		b.extendSet(compare.length - 1)
	}
	if l > 0 {
		// bounds check elimination
		data, cmpData := b.set, compare.set
		_ = data[l-1]
		_ = cmpData[l-1]
		for i := 0; i < l; i++ {
			data[i] ^= cmpData[i]
		}
	}
	if len(compare.set) > l {
		for i := l; i < len(compare.set); i++ {
			b.set[i] = compare.set[i]
		}
	}
}

// Is the length an exact multiple of word sizes?
func (b *BitSet) isLenExactMultiple() bool {
	return wordsIndex(b.length) == 0
}

// Clean last word by setting unused bits to 0
func (b *BitSet) cleanLastWord() {
	if !b.isLenExactMultiple() {
		b.set[len(b.set)-1] &= allBits >> (wordSize - wordsIndex(b.length))
	}
}

// Complement computes the (local) complement of a bitset (up to length bits)
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Complement() (result *BitSet) {
	panicIfNull(b)
	result = New(b.length)
	for i, word := range b.set {
		result.set[i] = ^word
	}
	result.cleanLastWord()
	return
}

// All returns true if all bits are set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) All() bool {
	panicIfNull(b)
	return b.Count() == b.length
}

// None returns true if no bit is set, false otherwise. Returns true for
// empty sets.
func (b *BitSet) None() bool {
	panicIfNull(b)
	if b != nil && b.set != nil {
		for _, word := range b.set {
			if word > 0 {
				return false
			}
		}
	}
	return true
}

// Any returns true if any bit is set, false otherwise
func (b *BitSet) Any() bool {
	panicIfNull(b)
	return !b.None()
}

// IsSuperSet returns true if this is a superset of the other set
func (b *BitSet) IsSuperSet(other *BitSet) bool {
	l := other.wordCount()
	if b.wordCount() < l {
		l = b.wordCount()
	}
	for i, word := range other.set[:l] {
		if b.set[i]&word != word {
			return false
		}
	}
	return popcntSlice(other.set[l:]) == 0
}

// IsStrictSuperSet returns true if this is a strict superset of the other set
func (b *BitSet) IsStrictSuperSet(other *BitSet) bool {
	return b.Count() > other.Count() && b.IsSuperSet(other)
}

// DumpAsBits dumps a bit set as a string of bits. Following the usual convention in Go,
// the least significant bits are printed last (index 0 is at the end of the string).
// This is useful for debugging and testing. It is not suitable for serialization.
func (b *BitSet) DumpAsBits() string {
	if b.set == nil {
		return "."
	}
	buffer := bytes.NewBufferString("")
	i := len(b.set) - 1
	for ; i >= 0; i-- {
		fmt.Fprintf(buffer, "%064b.", b.set[i])
	}
	return buffer.String()
}

// BinaryStorageSize returns the binary storage requirements (see WriteTo) in bytes.
func (b *BitSet) BinaryStorageSize() int {
	return wordBytes + wordBytes*b.wordCount()
}

func readUint64Array(reader io.Reader, data []uint64) error {
	length := len(data)
	bufferSize := 128
	buffer := make([]byte, bufferSize*wordBytes)
	for i := 0; i < length; i += bufferSize {
		end := i + bufferSize
		if end > length {
			end = length
			buffer = buffer[:wordBytes*(end-i)]
		}
		chunk := data[i:end]
		if _, err := io.ReadFull(reader, buffer); err != nil {
			return err
		}
		for i := range chunk {
			chunk[i] = uint64(binaryOrder.Uint64(buffer[8*i:]))
		}
	}
	return nil
}

func writeUint64Array(writer io.Writer, data []uint64) error {
	bufferSize := 128
	buffer := make([]byte, bufferSize*wordBytes)
	for i := 0; i < len(data); i += bufferSize {
		end := i + bufferSize
		if end > len(data) {
			end = len(data)
			buffer = buffer[:wordBytes*(end-i)]
		}
		chunk := data[i:end]
		for i, x := range chunk {
			binaryOrder.PutUint64(buffer[8*i:], x)
		}
		_, err := writer.Write(buffer)
		if err != nil {
			return err
		}
	}
	return nil
}

// WriteTo writes a BitSet to a stream. The format is:
// 1. uint64 length
// 2. []uint64 set
// The length is the number of bits in the BitSet.
//
// The set is a slice of uint64s containing between length and length + 63 bits.
// It is interpreted as a big-endian array of uint64s by default (see BinaryOrder())
// meaning that the first 8 bits are stored at byte index 7, the next 8 bits are stored
// at byte index 6... the bits 64 to 71 are stored at byte index 8, etc.
// If you change the binary order, you need to do so for both reading and writing.
// We recommend using the default binary order.
//
// Upon success, the number of bytes written is returned.
//
// Performance: if this function is used to write to a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Writer.
// E.g.,
//
//	      f, err := os.Create("myfile")
//		       w := bufio.NewWriter(f)
func (b *BitSet) WriteTo(stream io.Writer) (int64, error) {
	length := uint64(b.length)
	// Write length
	err := binary.Write(stream, binaryOrder, &length)
	if err != nil {
		// Upon failure, we do not guarantee that we
		// return the number of bytes written.
		return int64(0), err
	}
	err = writeUint64Array(stream, b.set[:b.wordCount()])
	if err != nil {
		// Upon failure, we do not guarantee that we
		// return the number of bytes written.
		return int64(wordBytes), err
	}
	return int64(b.BinaryStorageSize()), nil
}

// ReadFrom reads a BitSet from a stream written using WriteTo
// The format is:
// 1. uint64 length
// 2. []uint64 set
// See WriteTo for details.
// Upon success, the number of bytes read is returned.
// If the current BitSet is not large enough to hold the data,
// it is extended. In case of error, the BitSet is either
// left unchanged or made empty if the error occurs too late
// to preserve the content.
//
// Performance: if this function is used to read from a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Reader.
// E.g.,
//
//	f, err := os.Open("myfile")
//	r := bufio.NewReader(f)
func (b *BitSet) ReadFrom(stream io.Reader) (int64, error) {
	var length uint64
	err := binary.Read(stream, binaryOrder, &length)
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return 0, err
	}
	newlength := uint(length)

	if uint64(newlength) != length {
		return 0, errors.New("unmarshalling error: type mismatch")
	}
	nWords := wordsNeeded(uint(newlength))
	if cap(b.set) >= nWords {
		b.set = b.set[:nWords]
	} else {
		b.set = make([]uint64, nWords)
	}

	b.length = newlength

	err = readUint64Array(stream, b.set)
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		// We do not want to leave the BitSet partially filled as
		// it is error prone.
		b.set = b.set[:0]
		b.length = 0
		return 0, err
	}

	return int64(b.BinaryStorageSize()), nil
}

// MarshalBinary encodes a BitSet into a binary form and returns the result.
// Please see WriteTo for details.
func (b *BitSet) MarshalBinary() ([]byte, error) {
	var buf bytes.Buffer
	_, err := b.WriteTo(&buf)
	if err != nil {
		return []byte{}, err
	}

	return buf.Bytes(), err
}

// UnmarshalBinary decodes the binary form generated by MarshalBinary.
// Please see WriteTo for details.
func (b *BitSet) UnmarshalBinary(data []byte) error {
	buf := bytes.NewReader(data)
	_, err := b.ReadFrom(buf)
	return err
}

// MarshalJSON marshals a BitSet as a JSON structure
func (b BitSet) MarshalJSON() ([]byte, error) {
	buffer := bytes.NewBuffer(make([]byte, 0, b.BinaryStorageSize()))
	_, err := b.WriteTo(buffer)
	if err != nil {
		return nil, err
	}

	// URLEncode all bytes
	return json.Marshal(base64Encoding.EncodeToString(buffer.Bytes()))
}

// UnmarshalJSON unmarshals a BitSet from JSON created using MarshalJSON
func (b *BitSet) UnmarshalJSON(data []byte) error {
	// Unmarshal as string
	var s string
	err := json.Unmarshal(data, &s)
	if err != nil {
		return err
	}

	// URLDecode string
	buf, err := base64Encoding.DecodeString(s)
	if err != nil {
		return err
	}

	_, err = b.ReadFrom(bytes.NewReader(buf))
	return err
}

// Rank returns the number of set bits up to and including the index
// that are set in the bitset.
// See https://en.wikipedia.org/wiki/Ranking#Ranking_in_statistics
func (b *BitSet) Rank(index uint) (rank uint) {
	index++ // Rank is up to and including

	// needed more than once
	length := len(b.set)

	// TODO: built-in min requires go1.21 or later
	// idx := min(int(index>>6), len(b.set))
	idx := int(index >> 6)
	if idx > length {
		idx = length
	}

	// sum up the popcounts until idx ...
	// TODO: cannot range over idx (...): requires go1.22 or later
	// for j := range idx {
	for j := 0; j < idx; j++ {
		if w := b.set[j]; w != 0 {
			rank += uint(bits.OnesCount64(w))
		}
	}

	// ... plus partial word at idx,
	// make Rank inlineable and faster in the end
	// don't test index&63 != 0, just add, less branching
	if idx < length {
		rank += uint(bits.OnesCount64(b.set[idx] << (64 - index&63)))
	}

	return
}

// Select returns the index of the jth set bit, where j is the argument.
// The caller is responsible to ensure that 0 <= j < Count(): when j is
// out of range, the function returns the length of the bitset (b.length).
//
// Note that this function differs in convention from the Rank function which
// returns 1 when ranking the smallest value. We follow the conventional
// textbook definition of Select and Rank.
func (b *BitSet) Select(index uint) uint {
	leftover := index
	for idx, word := range b.set {
		w := uint(bits.OnesCount64(word))
		if w > leftover {
			return uint(idx)*64 + select64(word, leftover)
		}
		leftover -= w
	}
	return b.length
}

// top detects the top bit set
func (b *BitSet) top() (uint, bool) {
	for idx := len(b.set) - 1; idx >= 0; idx-- {
		if word := b.set[idx]; word != 0 {
			return uint(idx<<log2WordSize+bits.Len64(word)) - 1, true
		}
	}

	return 0, false
}

// ShiftLeft shifts the bitset like << operation would do.
//
// Left shift may require bitset size extension. We try to avoid the
// unnecessary memory operations by detecting the leftmost set bit.
// The function will panic if shift causes excess of capacity.
func (b *BitSet) ShiftLeft(bits uint) {
	panicIfNull(b)

	if bits == 0 {
		return
	}

	top, ok := b.top()
	if !ok {
		return
	}

	// capacity check
	if top+bits < bits {
		panic("You are exceeding the capacity")
	}

	// destination set
	dst := b.set

	// not using extendSet() to avoid unneeded data copying
	nsize := wordsNeeded(top + bits)
	if len(b.set) < nsize {
		dst = make([]uint64, nsize)
	}
	if top+bits >= b.length {
		b.length = top + bits + 1
	}

	pad, idx := top%wordSize, top>>log2WordSize
	shift, pages := bits%wordSize, bits>>log2WordSize
	if bits%wordSize == 0 { // happy case: just add pages
		copy(dst[pages:nsize], b.set)
	} else {
		if pad+shift >= wordSize {
			dst[idx+pages+1] = b.set[idx] >> (wordSize - shift)
		}

		for i := int(idx); i >= 0; i-- {
			if i > 0 {
				dst[i+int(pages)] = (b.set[i] << shift) | (b.set[i-1] >> (wordSize - shift))
			} else {
				dst[i+int(pages)] = b.set[i] << shift
			}
		}
	}

	// zeroing extra pages
	for i := 0; i < int(pages); i++ {
		dst[i] = 0
	}

	b.set = dst
}

// ShiftRight shifts the bitset like >> operation would do.
func (b *BitSet) ShiftRight(bits uint) {
	panicIfNull(b)

	if bits == 0 {
		return
	}

	top, ok := b.top()
	if !ok {
		return
	}

	if bits >= top {
		b.set = make([]uint64, wordsNeeded(b.length))
		return
	}

	pad, idx := top%wordSize, top>>log2WordSize
	shift, pages := bits%wordSize, bits>>log2WordSize
	if bits%wordSize == 0 { // happy case: just clear pages
		b.set = b.set[pages:]
		b.length -= pages * wordSize
	} else {
		for i := 0; i <= int(idx-pages); i++ {
			if i < int(idx-pages) {
				b.set[i] = (b.set[i+int(pages)] >> shift) | (b.set[i+int(pages)+1] << (wordSize - shift))
			} else {
				b.set[i] = b.set[i+int(pages)] >> shift
			}
		}

		if pad < shift {
			b.set[int(idx-pages)] = 0
		}
	}

	for i := int(idx-pages) + 1; i <= int(idx); i++ {
		b.set[i] = 0
	}
}

// OnesBetween returns the number of set bits in the range [from, to).
// The range is inclusive of 'from' and exclusive of 'to'.
// Returns 0 if from >= to.
func (b *BitSet) OnesBetween(from, to uint) uint {
	panicIfNull(b)

	if from >= to {
		return 0
	}

	// Calculate indices and masks for the starting and ending words
	startWord := from >> log2WordSize // Divide by wordSize
	endWord := to >> log2WordSize
	startOffset := from & wordMask // Mod wordSize
	endOffset := to & wordMask

	// Case 1: Bits lie within a single word
	if startWord == endWord {
		// Create mask for bits between from and to
		mask := uint64((1<<endOffset)-1) &^ ((1 << startOffset) - 1)
		return uint(bits.OnesCount64(b.set[startWord] & mask))
	}

	var count uint

	// Case 2: Bits span multiple words
	// 2a: Count bits in first word (from startOffset to end of word)
	startMask := ^uint64((1 << startOffset) - 1) // Mask for bits >= startOffset
	count = uint(bits.OnesCount64(b.set[startWord] & startMask))

	// 2b: Count all bits in complete words between start and end
	if endWord > startWord+1 {
		count += uint(popcntSlice(b.set[startWord+1 : endWord]))
	}

	// 2c: Count bits in last word (from start of word to endOffset)
	if endOffset > 0 {
		endMask := uint64(1<<endOffset) - 1 // Mask for bits < endOffset
		count += uint(bits.OnesCount64(b.set[endWord] & endMask))
	}

	return count
}

// Extract extracts bits according to a mask and returns the result
// in a new BitSet. See ExtractTo for details.
func (b *BitSet) Extract(mask *BitSet) *BitSet {
	dst := New(mask.Count())
	b.ExtractTo(mask, dst)
	return dst
}

// ExtractTo copies bits from the BitSet using positions specified in mask
// into a compacted form in dst. The number of set bits in mask determines
// the number of bits that will be extracted.
//
// For example, if mask has bits set at positions 1,4,5, then ExtractTo will
// take bits at those positions from the source BitSet and pack them into
// consecutive positions 0,1,2 in the destination BitSet.
func (b *BitSet) ExtractTo(mask *BitSet, dst *BitSet) {
	panicIfNull(b)
	panicIfNull(mask)
	panicIfNull(dst)

	if len(mask.set) == 0 || len(b.set) == 0 {
		return
	}

	// Ensure destination has enough space for extracted bits
	resultBits := uint(popcntSlice(mask.set))
	if dst.length < resultBits {
		dst.extendSet(resultBits - 1)
	}

	outPos := uint(0)
	length := len(mask.set)
	if len(b.set) < length {
		length = len(b.set)
	}

	// Process each word
	for i := 0; i < length; i++ {
		if mask.set[i] == 0 {
			continue // Skip words with no bits to extract
		}

		// Extract and compact bits according to mask
		extracted := pext(b.set[i], mask.set[i])
		bitsExtracted := uint(bits.OnesCount64(mask.set[i]))

		// Calculate destination position
		wordIdx := outPos >> log2WordSize
		bitOffset := outPos & wordMask

		// Write extracted bits, handling word boundary crossing
		dst.set[wordIdx] |= extracted << bitOffset
		if bitOffset+bitsExtracted > wordSize {
			dst.set[wordIdx+1] = extracted >> (wordSize - bitOffset)
		}

		outPos += bitsExtracted
	}
}

// Deposit creates a new BitSet and deposits bits according to a mask.
// See DepositTo for details.
func (b *BitSet) Deposit(mask *BitSet) *BitSet {
	dst := New(mask.length)
	b.DepositTo(mask, dst)
	return dst
}

// DepositTo spreads bits from a compacted form in the BitSet into positions
// specified by mask in dst. This is the inverse operation of Extract.
//
// For example, if mask has bits set at positions 1,4,5, then DepositTo will
// take consecutive bits 0,1,2 from the source BitSet and place them into
// positions 1,4,5 in the destination BitSet.
func (b *BitSet) DepositTo(mask *BitSet, dst *BitSet) {
	panicIfNull(b)
	panicIfNull(mask)
	panicIfNull(dst)

	if len(dst.set) == 0 || len(mask.set) == 0 || len(b.set) == 0 {
		return
	}

	inPos := uint(0)
	length := len(mask.set)
	if len(dst.set) < length {
		length = len(dst.set)
	}

	// Process each word
	for i := 0; i < length; i++ {
		if mask.set[i] == 0 {
			continue // Skip words with no bits to deposit
		}

		// Calculate source word index
		wordIdx := inPos >> log2WordSize
		if wordIdx >= uint(len(b.set)) {
			break // No more source bits available
		}

		// Get source bits, handling word boundary crossing
		sourceBits := b.set[wordIdx]
		bitOffset := inPos & wordMask
		if wordIdx+1 < uint(len(b.set)) && bitOffset != 0 {
			// Combine bits from current and next word
			sourceBits = (sourceBits >> bitOffset) |
				(b.set[wordIdx+1] << (wordSize - bitOffset))
		} else {
			sourceBits >>= bitOffset
		}

		// Deposit bits according to mask
		dst.set[i] = (dst.set[i] &^ mask.set[i]) | pdep(sourceBits, mask.set[i])
		inPos += uint(bits.OnesCount64(mask.set[i]))
	}
}

//go:generate go run cmd/pextgen/main.go -pkg=bitset

func pext(w, m uint64) (result uint64) {
	var outPos uint

	// Process byte by byte
	for i := 0; i < 8; i++ {
		shift := i << 3 // i * 8 using bit shift
		b := uint8(w >> shift)
		mask := uint8(m >> shift)

		extracted := pextLUT[b][mask]
		bits := popLUT[mask]

		result |= uint64(extracted) << outPos
		outPos += uint(bits)
	}

	return result
}

func pdep(w, m uint64) (result uint64) {
	var inPos uint

	// Process byte by byte
	for i := 0; i < 8; i++ {
		shift := i << 3 // i * 8 using bit shift
		mask := uint8(m >> shift)
		bits := popLUT[mask]

		// Get the bits we'll deposit from the source
		b := uint8(w >> inPos)

		// Deposit them according to the mask for this byte
		deposited := pdepLUT[b][mask]

		// Add to result
		result |= uint64(deposited) << shift
		inPos += uint(bits)
	}

	return result
}