1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
package ipmi
import "fmt"
// 31.6.1 SEL Record Type Ranges
type SELRecordType uint8
type SELRecordTypeRange string
const (
// Range reserved for standard SEL Record Types.
// As of this writing, only type 02h is defined.
// Records are automatically timestamped unless otherwise indicated
// 00h - BFh
SELRecordTypeRangeStandard SELRecordTypeRange = "standard"
// 32.2 OEM SEL Record - Type C0h-DFh
// Range reserved for timestamped OEM SEL records.
// These records are automatically timestamped by the SEL Device
// C0h - DFh
SELRecordTypeRangeTimestampedOEM SELRecordTypeRange = "timestamped OEM"
// 32.3 OEM SEL Record - Type E0h-FFh
// Range reserved for non-timestamped OEM SEL records.
// The SEL Device does not automatically timestamp these records.
// The four bytes passed in the byte locations for the timestamp will be directly entered into the SEL.
// E0h - FFh
SELRecordTypeRangeNonTimestampedOEM SELRecordTypeRange = "non-timestamped OEM"
)
// The SELRecordType can be categorized into 3 ranges according to the SELRecordType value.
// - 00h - BFh -> standard
// - C0h - DFh -> timestamped OEM
// - E0h - FFh -> none-timestamped OEM
func (typ SELRecordType) Range() SELRecordTypeRange {
t := uint8(typ)
if t <= 0xbf {
return SELRecordTypeRangeStandard
}
if t >= 0xc0 && t <= 0xdf {
return SELRecordTypeRangeTimestampedOEM
}
// t >= 0xe0 && t <= 0xff
return SELRecordTypeRangeNonTimestampedOEM
}
func (typ SELRecordType) String() string {
return string(typ.Range())
}
// Event direction, true for deassertion, false for assertion.
//
// see: 32.1 SEL Event Records Table (Byte 13)
type EventDir bool
const (
EventDirDeassertion EventDir = true
EventDirAssertion EventDir = false
)
func (d EventDir) String() string {
if d {
return "Deassertion"
}
return "Assertion"
}
// 29.7 Event Data Field Formats
type EventData struct {
EventData1 uint8
EventData2 uint8
EventData3 uint8
}
// 29.7 Event Data Field Formats
// Event Data 1
// [3:0] -
// for threshold sensors: Offset from Event/Reading Code for threshold event.
// for discrete sensors: Offset from Event/Reading Code for discrete event state (corresponding 15 possible discrete events)
func (ed *EventData) EventReadingOffset() uint8 {
return ed.EventData1 & 0x0f
}
func (ed *EventData) String() string {
return fmt.Sprintf("%02x%02x%02x", ed.EventData1, ed.EventData2, ed.EventData3)
}
// 41.2 Event/Reading Type Code
// 42.1 Event/Reading Type Codes
type EventReadingType uint8
const (
// Unspecified
EventReadingTypeUnspecified EventReadingType = 0x00
// Threshold
EventReadingTypeThreshold EventReadingType = 0x01
// Generic
EventReadingTypeTransitionState EventReadingType = 0x02
EventReadingTypeState EventReadingType = 0x03
EventReadingTypePredictiveFailure EventReadingType = 0x04
EventReadingTypeLimit EventReadingType = 0x05
EventReadingTypePerformance EventReadingType = 0x06
EventReadingTypeTransitionSeverity EventReadingType = 0x07
EventReadingTypeDevicePresent EventReadingType = 0x08
EventReadingTypeDeviceEnabled EventReadingType = 0x09
EventReadingTypeTransitionAvailability EventReadingType = 0x0a
EventReadingTypeRedundancy EventReadingType = 0x0b
EventReadingTypeACPIPowerState EventReadingType = 0x0c
EventReadingTypeSensorSpecific EventReadingType = 0x6f
// OEM
EventReadingTypeOEMMin EventReadingType = 0x70
EventReadingTypeOEMMax EventReadingType = 0x7f
// Reserved
)
func (typ EventReadingType) String() string {
var c string
switch typ {
case EventReadingTypeUnspecified:
c = "Unspecified"
case EventReadingTypeThreshold:
c = "Threshold"
case EventReadingTypeSensorSpecific:
c = "Sensor Specific"
default:
if typ >= 0x02 && typ <= 0x0c {
c = "Generic"
} else if typ >= EventReadingTypeOEMMin && typ <= EventReadingTypeOEMMax {
c = "OEM"
} else {
c = "Reserved"
}
}
return c
}
func (typ EventReadingType) SensorClass() SensorClass {
if typ == EventReadingTypeThreshold {
return SensorClassThreshold
}
return SensorClassDiscrete
}
func (typ EventReadingType) IsThreshold() bool {
return typ == EventReadingTypeThreshold
}
// EventString returns description of the event
func (typ EventReadingType) EventString(sensorType SensorType, eventData EventData) string {
event := typ.Event(sensorType, eventData)
if event == nil {
return ""
}
return event.EventName
}
// EventSeverity return the severity for the event.
// Todo, refactor
func (typ EventReadingType) EventSeverity(sensorType SensorType, eventData EventData, eventDir EventDir) EventSeverity {
event := typ.Event(sensorType, eventData)
if event == nil {
return EventSeverityInfo
}
switch typ {
case EventReadingTypeUnspecified:
return EventSeverityInfo
case EventReadingTypeThreshold:
if !eventDir {
if v, ok := event.AssertionSeverityMap[sensorType]; ok {
return v
}
if v, ok := event.AssertionSeverityMap[SensorTypeReserved]; ok {
return v
}
return EventSeverityInfo
} else {
if v, ok := event.DeassertionSeverityMap[sensorType]; ok {
return v
}
if v, ok := event.DeassertionSeverityMap[SensorTypeReserved]; ok {
return v
}
return EventSeverityInfo
}
case EventReadingTypeSensorSpecific:
if !eventDir {
return event.AssertionSeverity
}
return event.DeassertionSeverity
default:
if typ >= 0x02 && typ <= 0x0c {
if !eventDir {
if v, ok := event.AssertionSeverityMap[sensorType]; ok {
return v
}
if v, ok := event.AssertionSeverityMap[SensorTypeReserved]; ok {
return v
}
return EventSeverityInfo
} else {
if v, ok := event.DeassertionSeverityMap[sensorType]; ok {
return v
}
if v, ok := event.DeassertionSeverityMap[SensorTypeReserved]; ok {
return v
}
return EventSeverityInfo
}
} else if typ >= EventReadingTypeOEMMin && typ <= EventReadingTypeOEMMax {
return EventSeverityInfo
} else {
return EventSeverityInfo
}
}
}
// Event return the predefined Event description struct.
func (typ EventReadingType) Event(sensorType SensorType, eventData EventData) *Event {
offset := eventData.EventReadingOffset()
return typ.EventForOffset(sensorType, offset)
}
func (typ EventReadingType) EventForOffset(sensorType SensorType, eventOffset uint8) *Event {
switch typ {
case EventReadingTypeUnspecified:
return nil
case EventReadingTypeThreshold:
return genericEvent(typ, eventOffset)
case EventReadingTypeSensorSpecific:
return sensorSpecificEvent(sensorType, eventOffset)
default:
if typ >= 0x02 && typ <= 0x0c {
return genericEvent(typ, eventOffset)
} else if typ >= EventReadingTypeOEMMin && typ <= EventReadingTypeOEMMax {
return oemEvent(sensorType, eventOffset)
} else {
return nil
}
}
}
type EventSeverity string
const (
EventSeverityInfo EventSeverity = "Info"
EventSeverityOK EventSeverity = "OK"
EventSeverityWarning EventSeverity = "Warning"
EventSeverityCritical EventSeverity = "Critical"
EventSeverityDegraded EventSeverity = "Degraded"
EventSeverityNonFatal EventSeverity = "Non-fatal"
)
type Event struct {
EventName string
EventDesc string
// for generic event, different sensor type may means different severity
AssertionSeverityMap map[SensorType]EventSeverity
DeassertionSeverityMap map[SensorType]EventSeverity
// for sensor specific event, severity is certain.
AssertionSeverity EventSeverity
DeassertionSeverity EventSeverity
ED2 map[uint8]string // EventData2
ED3 map[uint8]string // EventData3
}
|