1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
package ipmi
import (
"context"
"fmt"
)
const SDRRecordHeaderSize int = 5
// 43. Sensor Data Record Formats
// SDRRecordType is a number representing the type of the record.
type SDRRecordType uint8
const (
SDRRecordTypeFullSensor SDRRecordType = 0x01
SDRRecordTypeCompactSensor SDRRecordType = 0x02
SDRRecordTypeEventOnly SDRRecordType = 0x03
SDRRecordTypeEntityAssociation SDRRecordType = 0x08
SDRRecordTypeDeviceRelativeEntityAssociation SDRRecordType = 0x09
SDRRecordTypeGenericLocator SDRRecordType = 0x10
SDRRecordTypeFRUDeviceLocator SDRRecordType = 0x11
SDRRecordTypeManagementControllerDeviceLocator SDRRecordType = 0x12
SDRRecordTypeManagementControllerConfirmation SDRRecordType = 0x13
SDRRecordTypeBMCMessageChannelInfo SDRRecordType = 0x14
SDRRecordTypeOEM SDRRecordType = 0xc0
)
func (sdrRecordType SDRRecordType) String() string {
// 43.6 SDR Type 0Ah:0Fh - Reserved Records
// This range and all other unspecified SDR Type values are reserved.
var sdrRecordTypeMap = map[SDRRecordType]string{
0x01: "Full",
0x02: "Compact",
0x03: "Event",
0x08: "Entity Assoc",
0x09: "Device Entity Assoc",
0x10: "Generic Device Loc",
0x11: "FRU Device Loc",
0x12: "MC Device Loc", // MC: Management Controller
0x13: "MC Confirmation",
0x14: "BMC Msg Channel Info",
0xc0: "OEM",
}
s, ok := sdrRecordTypeMap[sdrRecordType]
if !ok {
return "Reserved"
}
return s
}
type SDRHeader struct {
RecordID uint16
SDRVersion uint8 // The version number of the SDR specification.
RecordType SDRRecordType // A number representing the type of the record. E.g. 01h = 8-bit Sensor with Thresholds.
RecordLength uint8 // Number of bytes of data following the Record Length field.
}
// 43. Sensor Data Record Formats
type SDR struct {
// NextRecordID should be filled by ParseSDR.
NextRecordID uint16
RecordHeader *SDRHeader
Full *SDRFull
Compact *SDRCompact
EventOnly *SDREventOnly
EntityAssociation *SDREntityAssociation
DeviceRelative *SDRDeviceRelative
GenericDeviceLocator *SDRGenericDeviceLocator
FRUDeviceLocator *SDRFRUDeviceLocator
MgmtControllerDeviceLocator *SDRMgmtControllerDeviceLocator
MgmtControllerConfirmation *SDRMgmtControllerConfirmation
BMCChannelInfo *SDRBMCChannelInfo
OEM *SDROEM
Reserved *SDRReserved
}
func (sdr *SDR) String() string {
recordStr := "" +
fmt.Sprintf("Record ID: : %#02x\n", sdr.RecordHeader.RecordID) +
fmt.Sprintf("Record Type: : %s\n", sdr.RecordHeader.RecordType) +
fmt.Sprintf("SDR Version: : %#02x\n", sdr.RecordHeader.SDRVersion) +
fmt.Sprintf("Record Length: : %d\n", sdr.RecordHeader.RecordLength)
recordType := sdr.RecordHeader.RecordType
switch recordType {
case SDRRecordTypeFullSensor:
return recordStr + sdr.Full.String()
case SDRRecordTypeCompactSensor:
return recordStr + sdr.Compact.String()
case SDRRecordTypeEventOnly:
return recordStr + sdr.EventOnly.String()
case SDRRecordTypeEntityAssociation:
return recordStr
case SDRRecordTypeDeviceRelativeEntityAssociation:
return recordStr
case SDRRecordTypeGenericLocator:
return recordStr
case SDRRecordTypeFRUDeviceLocator:
return recordStr
case SDRRecordTypeManagementControllerDeviceLocator:
return recordStr
case SDRRecordTypeManagementControllerConfirmation:
return recordStr
case SDRRecordTypeOEM:
return recordStr
default:
return recordStr
}
}
// Not all SDRs have a sensor number.
// Only Full/Compact/EventOnly SDRs have a sensor number.
func (sdr *SDR) SensorNumber() SensorNumber {
recordType := sdr.RecordHeader.RecordType
switch recordType {
case SDRRecordTypeFullSensor:
return sdr.Full.SensorNumber
case SDRRecordTypeCompactSensor:
return sdr.Compact.SensorNumber
case SDRRecordTypeEventOnly:
return sdr.EventOnly.SensorNumber
}
return SensorNumberReserved
}
func (sdr *SDR) SensorName() string {
recordType := sdr.RecordHeader.RecordType
switch recordType {
case SDRRecordTypeFullSensor:
return string(sdr.Full.IDStringBytes)
case SDRRecordTypeCompactSensor:
return string(sdr.Compact.IDStringBytes)
case SDRRecordTypeEventOnly:
return string(sdr.EventOnly.IDStringBytes)
}
return ""
}
// Determine if sensor has an analog reading
func (sdr *SDR) HasAnalogReading() bool {
// Only Full sensors can return analog values, Compact sensors can't return analog values.
// But not all Full sensors return analog values.
if sdr.RecordHeader.RecordType != SDRRecordTypeFullSensor {
return false
}
if sdr.Full == nil {
return false
}
return sdr.Full.HasAnalogReading()
}
// ParseSDR parses raw SDR record data to SDR struct.
// This function is normally used after getting GetSDRResponse or GetDeviceSDRResponse to
// interpret the raw SDR record data in the response.
func ParseSDR(data []byte, nextRecordID uint16) (*SDR, error) {
sdrHeader := &SDRHeader{}
if len(data) < SDRRecordHeaderSize {
return nil, ErrNotEnoughDataWith("sdr record header size", len(data), SDRRecordHeaderSize)
}
sdrHeader.RecordID, _, _ = unpackUint16L(data, 0)
sdrHeader.SDRVersion, _, _ = unpackUint8(data, 2)
recordType, _, _ := unpackUint8(data, 3)
sdrHeader.RecordType = SDRRecordType(recordType)
sdrHeader.RecordLength, _, _ = unpackUint8(data, 4)
sdr := &SDR{
RecordHeader: sdrHeader,
NextRecordID: nextRecordID,
}
switch sdrHeader.RecordType {
case SDRRecordTypeFullSensor:
if err := parseSDRFullSensor(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRFullSensor failed, err: %w", err)
}
case SDRRecordTypeCompactSensor:
if err := parseSDRCompactSensor(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRCompactSensor failed, err: %w", err)
}
case SDRRecordTypeEventOnly:
if err := parseSDREventOnly(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDREventOnly failed, err: %w", err)
}
case SDRRecordTypeEntityAssociation:
if err := parseSDREntityAssociation(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDREntityAssociation failed, err: %w", err)
}
case SDRRecordTypeDeviceRelativeEntityAssociation:
if err := parseSDRDeviceRelativeEntityAssociation(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRDeviceRelativeEntityAssociation failed, err: %w", err)
}
case SDRRecordTypeGenericLocator:
if err := parseSDRGenericLocator(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRGenericLocator failed, err: %w", err)
}
case SDRRecordTypeFRUDeviceLocator:
if err := parseSDRFRUDeviceLocator(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRFRUDeviceLocator failed, err: %w", err)
}
case SDRRecordTypeManagementControllerDeviceLocator:
if err := parseSDRManagementControllerDeviceLocator(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRManagementControllerDeviceLocator failed, err: %w", err)
}
case SDRRecordTypeManagementControllerConfirmation:
if err := parseSDRManagementControllerConfirmation(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRManagementControllerConfirmation failed, err: %w", err)
}
case SDRRecordTypeBMCMessageChannelInfo:
if err := parseSDRBMCMessageChannelInfo(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDRBMCMessageChannelInfo failed, err: %w", err)
}
case SDRRecordTypeOEM:
if err := parseSDROEM(data, sdr); err != nil {
return nil, fmt.Errorf("parseSDROEM failed, err: %w", err)
}
}
return sdr, nil
}
// Format SDRs of FRU record type
func FormatSDRs_FRU(records []*SDR) string {
rows := make([]map[string]string, 0)
for _, sdr := range records {
if sdr == nil || sdr.RecordHeader == nil {
continue
}
recordID := sdr.RecordHeader.RecordID
recordType := sdr.RecordHeader.RecordType
switch recordType {
case SDRRecordTypeFRUDeviceLocator:
sdrFRU := sdr.FRUDeviceLocator
row := map[string]string{
"RecordID": fmt.Sprintf("%#02x", recordID),
"RecordType": fmt.Sprintf("%s (%#02x)", recordType.String(), uint8(recordType)),
"DeviceAccessAddr": fmt.Sprintf("%#02x", sdrFRU.DeviceAccessAddress),
"FRUDeviceID": fmt.Sprintf("%#02x", sdrFRU.FRUDeviceID_SlaveAddress),
"IsLogicFRU": fmt.Sprintf("%v", sdrFRU.IsLogicalFRUDevice),
"AccessLUN": fmt.Sprintf("%#02x", sdrFRU.AccessLUN),
"PrivateBusID": fmt.Sprintf("%#02x", sdrFRU.PrivateBusID),
"ChannelNumber": fmt.Sprintf("%#02x", sdrFRU.ChannelNumber),
"DeviceType": fmt.Sprintf("%s (%#02x)", sdrFRU.DeviceType.String(), uint8(sdrFRU.DeviceType)),
"Modifier": fmt.Sprintf("%#02x", sdrFRU.DeviceTypeModifier),
"FRUEntityID": fmt.Sprintf("%#02x", sdrFRU.FRUEntityID),
"FRUEntityInstance": fmt.Sprintf("%#02x", sdrFRU.FRUEntityInstance),
"TypeLength": sdrFRU.DeviceIDTypeLength.String(),
"DeviceName": string(sdrFRU.DeviceIDBytes),
}
rows = append(rows, row)
default:
}
}
headers := []string{
"RecordID",
"RecordType",
"DeviceAccessAddr",
"FRUDeviceID",
"IsLogicFRU",
"AccessLUN",
"PrivateBusID",
"ChannelNumber",
"DeviceType",
"Modifier",
"FRUEntityID",
"FRUEntityInstance",
"TypeLength",
"DeviceName",
}
return RenderTable(headers, rows)
}
// FormatSDRs returns a table formatted string for print.
func FormatSDRs(records []*SDR) string {
rows := make([]map[string]string, 0)
for _, sdr := range records {
if sdr == nil || sdr.RecordHeader == nil {
continue
}
recordID := sdr.RecordHeader.RecordID
recordType := sdr.RecordHeader.RecordType
var generatorID GeneratorID
var sensorUnit SensorUnit
var entityID EntityID
var entityInstance EntityInstance
var sensorType SensorType
var eventReadingType EventReadingType
var sensorValue float64
var sensorStatus string
switch recordType {
case SDRRecordTypeFullSensor:
generatorID = sdr.Full.GeneratorID
sensorUnit = sdr.Full.SensorUnit
entityID = sdr.Full.SensorEntityID
entityInstance = sdr.Full.SensorEntityInstance
sensorType = sdr.Full.SensorType
eventReadingType = sdr.Full.SensorEventReadingType
sensorValue = sdr.Full.SensorValue
sensorStatus = sdr.Full.SensorStatus
case SDRRecordTypeCompactSensor:
generatorID = sdr.Compact.GeneratorID
sensorUnit = sdr.Compact.SensorUnit
entityID = sdr.Compact.SensorEntityID
entityInstance = sdr.Compact.SensorEntityInstance
sensorType = sdr.Compact.SensorType
eventReadingType = sdr.Compact.SensorEventReadingType
sensorValue = sdr.Compact.SensorValue
sensorStatus = sdr.Compact.SensorStatus
default:
}
row := map[string]string{
"RecordID": fmt.Sprintf("%#02x", recordID),
"RecordType": fmt.Sprintf("%s (%#02x)", recordType.String(), uint8(recordType)),
"GeneratorID": fmt.Sprintf("%#04x", uint16(generatorID)),
"SensorNumber": fmt.Sprintf("%#02x", sdr.SensorNumber()),
"SensorName": sdr.SensorName(),
"Entity": canonicalEntityString(entityID, entityInstance),
"SensorType": sensorType.String(),
"EventReadingType": eventReadingType.String(),
"SensorValue": fmt.Sprintf("%#.2f", sensorValue),
"SensorUnit": sensorUnit.String(),
"SensorStatus": sensorStatus,
}
rows = append(rows, row)
}
headers := []string{
"RecordID",
"RecordType",
"GeneratorID",
"SensorNumber",
"SensorName",
"Entity",
"SensorType",
"EventReadingType",
"SensorValue",
"SensorUnit",
"SensorStatus",
}
return RenderTable(headers, rows)
}
// Mask_Threshold holds masks for a specific threshold type.
type Mask_Threshold struct {
StatusReturned bool // Indicates whether this threshold comparison status is returned via the Get Sensor Reading command.
Settable bool
Readable bool
High_Assert bool
Low_Assert bool
High_Deassert bool
Low_Deassert bool
}
// Mask_Thresholds holds masks for all threshold types.
type Mask_Thresholds struct {
LNR Mask_Threshold
LCR Mask_Threshold
LNC Mask_Threshold
UNR Mask_Threshold
UCR Mask_Threshold
UNC Mask_Threshold
}
func (mask *Mask_Thresholds) IsThresholdReadable(thresholdType SensorThresholdType) bool {
switch thresholdType {
case SensorThresholdType_LCR:
return mask.LCR.Readable
case SensorThresholdType_LNR:
return mask.LNR.Readable
case SensorThresholdType_LNC:
return mask.LNC.Readable
case SensorThresholdType_UCR:
return mask.UCR.Readable
case SensorThresholdType_UNC:
return mask.UNC.Readable
case SensorThresholdType_UNR:
return mask.UNR.Readable
}
return false
}
type Mask_DiscreteEvent struct {
State_0 bool
State_1 bool
State_2 bool
State_3 bool
State_4 bool
State_5 bool
State_6 bool
State_7 bool
State_8 bool
State_9 bool
State_10 bool
State_11 bool
State_12 bool
State_13 bool
State_14 bool
}
func (mask Mask_DiscreteEvent) TrueEvents() []uint8 {
events := []uint8{}
if mask.State_0 {
events = append(events, 0)
}
if mask.State_1 {
events = append(events, 1)
}
if mask.State_2 {
events = append(events, 2)
}
if mask.State_3 {
events = append(events, 3)
}
if mask.State_4 {
events = append(events, 4)
}
if mask.State_5 {
events = append(events, 5)
}
if mask.State_6 {
events = append(events, 6)
}
if mask.State_7 {
events = append(events, 7)
}
if mask.State_8 {
events = append(events, 8)
}
if mask.State_9 {
events = append(events, 9)
}
if mask.State_10 {
events = append(events, 10)
}
if mask.State_11 {
events = append(events, 11)
}
if mask.State_12 {
events = append(events, 12)
}
if mask.State_13 {
events = append(events, 13)
}
if mask.State_14 {
events = append(events, 14)
}
return events
}
type Mask_Discrete struct {
// Assertion Event Mask for non-threshold based sensors, true means assertion event can be generated for this state
Assert Mask_DiscreteEvent
// Deassertion Event Mask for non-threshold based sensors, true means deassertion event can be generated for this state
Deassert Mask_DiscreteEvent
// Reading Mask for non-threshold based sensors, true means discrete state can be returned by this sensor
Reading Mask_DiscreteEvent
}
// For non-threshold-based sensors, Mask holds:
// - Assertion Event Mask
// - Deassertion Event Mask
// - Discrete Reading Mask
//
// For threshold-based sensors, Mask holds:
// - Lower Threshold Reading Mask
// - Upper Threshold Reading Mask
// - Settable Threshold Mask, Readable Threshold Mask
//
// Used in Full and Compact SDR
type Mask struct {
Threshold Mask_Thresholds
Discrete Mask_Discrete
}
// ParseAssertLower fill:
// - Assertion Event Mask
// - Lower Threshold Reading Mask
// - Threshold Assertion Event Mask
func (mask *Mask) ParseAssertLower(b uint16) {
lsb := uint8(b & 0x00ff) // Least Significant Byte
msb := uint8(b >> 8) // Most Significant Byte
// Assertion Event Mask
mask.Discrete.Assert.State_14 = isBit6Set(lsb)
mask.Discrete.Assert.State_13 = isBit5Set(lsb)
mask.Discrete.Assert.State_12 = isBit4Set(lsb)
mask.Discrete.Assert.State_11 = isBit3Set(lsb)
mask.Discrete.Assert.State_10 = isBit2Set(lsb)
mask.Discrete.Assert.State_9 = isBit1Set(lsb)
mask.Discrete.Assert.State_8 = isBit0Set(lsb)
mask.Discrete.Assert.State_7 = isBit7Set(msb)
mask.Discrete.Assert.State_6 = isBit6Set(msb)
mask.Discrete.Assert.State_5 = isBit5Set(msb)
mask.Discrete.Assert.State_4 = isBit4Set(msb)
mask.Discrete.Assert.State_3 = isBit3Set(msb)
mask.Discrete.Assert.State_2 = isBit2Set(msb)
mask.Discrete.Assert.State_1 = isBit1Set(msb)
mask.Discrete.Assert.State_0 = isBit0Set(msb)
// Lower Threshold Reading Mask
// Indicates which lower threshold comparison status is returned via the Get Sensor Reading command
mask.Threshold.LNR.StatusReturned = isBit6Set(lsb)
mask.Threshold.LCR.StatusReturned = isBit5Set(lsb)
mask.Threshold.LNC.StatusReturned = isBit4Set(lsb)
// Threshold Assertion Event Mask
mask.Threshold.UNR.High_Assert = isBit3Set(lsb)
mask.Threshold.UNR.Low_Assert = isBit2Set(lsb)
mask.Threshold.UCR.High_Assert = isBit1Set(lsb)
mask.Threshold.UCR.Low_Assert = isBit0Set(lsb)
mask.Threshold.UNC.High_Assert = isBit7Set(msb)
mask.Threshold.UNC.Low_Assert = isBit6Set(msb)
mask.Threshold.LNR.High_Assert = isBit5Set(msb)
mask.Threshold.LNR.Low_Assert = isBit4Set(msb)
mask.Threshold.LCR.High_Assert = isBit3Set(msb)
mask.Threshold.LCR.Low_Assert = isBit2Set(msb)
mask.Threshold.LNC.High_Assert = isBit1Set(msb)
mask.Threshold.LNC.Low_Assert = isBit0Set(msb)
}
func (mask *Mask) ParseDeassertUpper(b uint16) {
lsb := uint8(b & 0x00ff) // Least Significant Byte
msb := uint8(b >> 8) // Most Significant Byte
// Deassertion Event Mask
mask.Discrete.Deassert.State_14 = isBit6Set(lsb)
mask.Discrete.Deassert.State_13 = isBit5Set(lsb)
mask.Discrete.Deassert.State_12 = isBit4Set(lsb)
mask.Discrete.Deassert.State_11 = isBit3Set(lsb)
mask.Discrete.Deassert.State_10 = isBit2Set(lsb)
mask.Discrete.Deassert.State_9 = isBit1Set(lsb)
mask.Discrete.Deassert.State_8 = isBit0Set(lsb)
mask.Discrete.Deassert.State_7 = isBit7Set(msb)
mask.Discrete.Deassert.State_6 = isBit6Set(msb)
mask.Discrete.Deassert.State_5 = isBit5Set(msb)
mask.Discrete.Deassert.State_4 = isBit4Set(msb)
mask.Discrete.Deassert.State_3 = isBit3Set(msb)
mask.Discrete.Deassert.State_2 = isBit2Set(msb)
mask.Discrete.Deassert.State_1 = isBit1Set(msb)
mask.Discrete.Deassert.State_0 = isBit0Set(msb)
// Upper Threshold Reading Mask
// Indicates which upper threshold comparison status is returned via the Get Sensor Reading command.
mask.Threshold.UNR.StatusReturned = isBit6Set(lsb)
mask.Threshold.UCR.StatusReturned = isBit5Set(lsb)
mask.Threshold.UNC.StatusReturned = isBit4Set(lsb)
// Threshold Deassertion Event Mask
mask.Threshold.UNR.High_Deassert = isBit3Set(lsb)
mask.Threshold.UNR.Low_Deassert = isBit2Set(lsb)
mask.Threshold.UCR.High_Deassert = isBit1Set(lsb)
mask.Threshold.UCR.Low_Deassert = isBit0Set(lsb)
mask.Threshold.UNC.High_Deassert = isBit7Set(msb)
mask.Threshold.UNC.Low_Deassert = isBit6Set(msb)
mask.Threshold.LNR.High_Deassert = isBit5Set(msb)
mask.Threshold.LNR.Low_Deassert = isBit4Set(msb)
mask.Threshold.LCR.High_Deassert = isBit3Set(msb)
mask.Threshold.LCR.Low_Deassert = isBit2Set(msb)
mask.Threshold.LNC.High_Deassert = isBit1Set(msb)
mask.Threshold.LNC.Low_Deassert = isBit0Set(msb)
}
func (mask *Mask) ParseReading(b uint16) {
lsb := uint8(b & 0x0000ffff) // Least Significant Byte
msb := uint8(b >> 8) // Most Significant Byte
// Reading Mask (for non-threshold based sensors)
// Indicates what discrete readings can be returned by this sensor.
mask.Discrete.Reading.State_14 = isBit6Set(lsb)
mask.Discrete.Reading.State_13 = isBit5Set(lsb)
mask.Discrete.Reading.State_12 = isBit4Set(lsb)
mask.Discrete.Reading.State_11 = isBit3Set(lsb)
mask.Discrete.Reading.State_10 = isBit2Set(lsb)
mask.Discrete.Reading.State_9 = isBit1Set(lsb)
mask.Discrete.Reading.State_8 = isBit0Set(lsb)
mask.Discrete.Reading.State_7 = isBit7Set(msb)
mask.Discrete.Reading.State_6 = isBit6Set(msb)
mask.Discrete.Reading.State_5 = isBit5Set(msb)
mask.Discrete.Reading.State_4 = isBit4Set(msb)
mask.Discrete.Reading.State_3 = isBit3Set(msb)
mask.Discrete.Reading.State_2 = isBit2Set(msb)
mask.Discrete.Reading.State_1 = isBit1Set(msb)
mask.Discrete.Reading.State_0 = isBit0Set(msb)
// Settable Threshold Mask (for threshold-based sensors)
// Indicates which thresholds are settable via the Set Sensor Thresholds.
mask.Threshold.UNR.Settable = isBit5Set(lsb)
mask.Threshold.UCR.Settable = isBit4Set(lsb)
mask.Threshold.UNC.Settable = isBit3Set(lsb)
mask.Threshold.LNR.Settable = isBit2Set(lsb)
mask.Threshold.LCR.Settable = isBit1Set(lsb)
mask.Threshold.LNC.Settable = isBit0Set(lsb)
// Readable Threshold Mask (for threshold-based sensors)
// Indicates which thresholds are readable via the Get Sensor Thresholds command.
mask.Threshold.UNR.Readable = isBit5Set(msb)
mask.Threshold.UCR.Readable = isBit4Set(msb)
mask.Threshold.UNC.Readable = isBit3Set(msb)
mask.Threshold.LNR.Readable = isBit2Set(msb)
mask.Threshold.LCR.Readable = isBit1Set(msb)
mask.Threshold.LNC.Readable = isBit0Set(msb)
}
// StatusReturnedThresholds returns all supported thresholds comparison status
// via the Get Sensor Reading command.
func (mask *Mask) StatusReturnedThresholds() SensorThresholdTypes {
out := make([]SensorThresholdType, 0)
if mask.Threshold.UNC.StatusReturned {
out = append(out, SensorThresholdType_UNC)
}
if mask.Threshold.UCR.StatusReturned {
out = append(out, SensorThresholdType_UCR)
}
if mask.Threshold.UNR.StatusReturned {
out = append(out, SensorThresholdType_UNR)
}
if mask.Threshold.LNC.StatusReturned {
out = append(out, SensorThresholdType_LNC)
}
if mask.Threshold.LCR.StatusReturned {
out = append(out, SensorThresholdType_LCR)
}
if mask.Threshold.LNR.StatusReturned {
out = append(out, SensorThresholdType_LNR)
}
return out
}
// ReadableThresholds returns all readable thresholds for the sensor.
func (mask *Mask) ReadableThresholds() SensorThresholdTypes {
out := make([]SensorThresholdType, 0)
if mask.Threshold.UNC.Readable {
out = append(out, SensorThresholdType_UNC)
}
if mask.Threshold.UCR.Readable {
out = append(out, SensorThresholdType_UCR)
}
if mask.Threshold.UNR.Readable {
out = append(out, SensorThresholdType_UNR)
}
if mask.Threshold.LNC.Readable {
out = append(out, SensorThresholdType_LNC)
}
if mask.Threshold.LCR.Readable {
out = append(out, SensorThresholdType_LCR)
}
if mask.Threshold.LNR.Readable {
out = append(out, SensorThresholdType_LNR)
}
return out
}
func (mask *Mask) SettableThresholds() SensorThresholdTypes {
out := make([]SensorThresholdType, 0)
if mask.Threshold.UNC.Settable {
out = append(out, SensorThresholdType_UNC)
}
if mask.Threshold.UCR.Settable {
out = append(out, SensorThresholdType_UCR)
}
if mask.Threshold.UNR.Settable {
out = append(out, SensorThresholdType_UNR)
}
if mask.Threshold.LNC.Settable {
out = append(out, SensorThresholdType_LNC)
}
if mask.Threshold.LCR.Settable {
out = append(out, SensorThresholdType_LCR)
}
if mask.Threshold.LNR.Settable {
out = append(out, SensorThresholdType_LNR)
}
return out
}
func (mask *Mask) SupportedThresholdEvents() SensorEvents {
out := make([]SensorEvent, 0)
// Assertion Events
if mask.Threshold.UNC.High_Assert {
out = append(out, SensorEvent_UNC_High_Assert)
}
if mask.Threshold.UNC.Low_Assert {
out = append(out, SensorEvent_UNC_Low_Assert)
}
if mask.Threshold.UCR.High_Assert {
out = append(out, SensorEvent_UCR_High_Assert)
}
if mask.Threshold.UCR.Low_Assert {
out = append(out, SensorEvent_UCR_Low_Assert)
}
if mask.Threshold.UNR.High_Assert {
out = append(out, SensorEvent_UNR_High_Assert)
}
if mask.Threshold.UNR.Low_Assert {
out = append(out, SensorEvent_UNR_Low_Assert)
}
if mask.Threshold.LNC.High_Assert {
out = append(out, SensorEvent_LNC_High_Assert)
}
if mask.Threshold.LNC.Low_Assert {
out = append(out, SensorEvent_LNC_Low_Assert)
}
if mask.Threshold.LCR.High_Assert {
out = append(out, SensorEvent_LCR_High_Assert)
}
if mask.Threshold.LCR.Low_Assert {
out = append(out, SensorEvent_LCR_Low_Assert)
}
if mask.Threshold.LNR.High_Assert {
out = append(out, SensorEvent_LNR_High_Assert)
}
if mask.Threshold.LNR.Low_Assert {
out = append(out, SensorEvent_LNR_Low_Assert)
}
// Deassertion Events
if mask.Threshold.UNC.High_Deassert {
out = append(out, SensorEvent_UNC_High_Deassert)
}
if mask.Threshold.UNC.Low_Deassert {
out = append(out, SensorEvent_UNC_Low_Deassert)
}
if mask.Threshold.UCR.High_Deassert {
out = append(out, SensorEvent_UCR_High_Deassert)
}
if mask.Threshold.UCR.Low_Deassert {
out = append(out, SensorEvent_UCR_Low_Deassert)
}
if mask.Threshold.UNR.High_Deassert {
out = append(out, SensorEvent_UNR_High_Deassert)
}
if mask.Threshold.UNR.Low_Deassert {
out = append(out, SensorEvent_UNR_Low_Deassert)
}
if mask.Threshold.LNC.High_Deassert {
out = append(out, SensorEvent_LNC_High_Deassert)
}
if mask.Threshold.LNC.Low_Deassert {
out = append(out, SensorEvent_LNC_Low_Deassert)
}
if mask.Threshold.LCR.High_Deassert {
out = append(out, SensorEvent_LCR_High_Deassert)
}
if mask.Threshold.LCR.Low_Deassert {
out = append(out, SensorEvent_LCR_Low_Deassert)
}
if mask.Threshold.LNR.High_Deassert {
out = append(out, SensorEvent_LNR_High_Deassert)
}
if mask.Threshold.LNR.Low_Deassert {
out = append(out, SensorEvent_LNR_Low_Deassert)
}
return out
}
// SensorCapabilities represent the capabilities of the sensor.
// SDRs of Full/Compact record type has this field.
type SensorCapabilities struct {
// [7] - 1b = ignore sensor if Entity is not present or disabled. 0b = don't ignore sensor
IgnoreSensorIfNoEntity bool
// Sensor Auto Re-arm Support
// Indicates whether the sensor requires manual rearming, or automatically rearms
// itself when the event clears. 'manual' implies that the get sensor event status and
// rearm sensor events commands are supported
// [6] - 0b = no (manual), 1b = yes (auto)
AutoRearm bool
HysteresisAccess SensorHysteresisAccess
ThresholdAccess SensorThresholdAccess
EventMessageControl SensorEventMessageControl
}
// SDRs of Full/Compact record type has this field.
type SensorInitialization struct {
// 1b = Sensor is settable (Support the Set Sensor Reading And Event Status command)
// 0b = Sensor is not settable
//
// using this bit to report settable sensors is optional.
// I.e. it is ok to report a settable sensor as 'not settable' in the
// SDR if it is desired to not report this capability to s/w
Settable bool
// 1b = enable scanning
//
// this bit=1 implies that the sensor
// accepts the 'enable/disable scanning' bit in the Set
// Sensor Event Enable command.
InitScanning bool
// 1b = enable events (per Sensor Event Message Control
// Support bits in Sensor Capabilities field, and per
// the Event Mask fields, below).
InitEvents bool
// 1b = initialize sensor thresholds (per settable threshold mask below).
InitThresholds bool
// 1b = initialize sensor hysteresis (per Sensor Hysteresis
// Support bits in the Sensor Capabilities field, below).
InitHysteresis bool
// 1b = initialize Sensor Type and Event / Reading Type code
InitSensorType bool
// Sensor Default (power up) State
//
// Reports how this sensor comes up on device power up and hardware/cold reset.
// The Initialization Agent does not use this bit. This bit solely reports to software
// how the sensor comes prior to being initialized by the Initialization Agent.
// 0b = event generation disabled, 1b = event generation enabled
EventGenerationEnabled bool
// 0b = sensor scanning disabled, 1b = sensor scanning enabled
SensorScanningEnabled bool
}
// enhanceSDR will fill extra data for SDR
func (c *Client) enhanceSDR(ctx context.Context, sdr *SDR) error {
if sdr == nil {
return nil
}
if sdr.RecordHeader.RecordType != SDRRecordTypeFullSensor &&
sdr.RecordHeader.RecordType != SDRRecordTypeCompactSensor {
return nil
}
sensor, err := c.sdrToSensor(ctx, sdr)
if err != nil {
return fmt.Errorf("sdrToSensor failed, err: %w", err)
}
switch sdr.RecordHeader.RecordType {
case SDRRecordTypeFullSensor:
sdr.Full.SensorValue = sensor.Value
sdr.Full.SensorStatus = sensor.Status()
case SDRRecordTypeCompactSensor:
sdr.Compact.SensorValue = sensor.Value
sdr.Compact.SensorStatus = sensor.Status()
}
return nil
}
|