1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
package ipmi
import (
"fmt"
"strings"
)
// 43.1 SDRFull Type 01h, Full Sensor Record
//
// The Full Sensor Record can be used to describe any type of sensor.
type SDRFull struct {
//
// Record KEY
//
// The Record 'Key' Fields are a set of fields that together are unique amongst instances of a given record type.
// The Record Key bytes shall be contiguous and follow the Record Header.
// The number of bytes that make up the Record Key field may vary according to record type.
GeneratorID GeneratorID
SensorNumber SensorNumber
//
// RECORD BODY
//
// Indicates the physical entity that the sensor is monitoring or is otherwise
// associated with the sensor.
SensorEntityID EntityID
SensorEntityInstance EntityInstance
// For example, if this bit is set, and the Entity ID is "Processor",
// the container entity would be considered to represent a logical "Processor Group" rather than a physical processor.
//
// This bit is typically used in conjunction with an Entity Association full.
//
// 0b = treat entity as a physical entity per Entity ID table
// 1b = treat entity as a logical container entity.
SensorEntityIsLogical bool
SensorInitialization SensorInitialization
SensorCapabilities SensorCapabilities
SensorType SensorType
SensorEventReadingType EventReadingType
Mask Mask
SensorUnit SensorUnit
// Note, SensorValue is not stored in SDR intrinsically, this field is set by `enhanceSDR`
// It is fetched by IPMI command GetSensorReading and aligned/converted to SensorUnit based.
SensorValue float64
// Note, SensorStatus is not stored in SDR intrinsically, this field is set by `enhanceSDR`
SensorStatus string
EntityInstanceSharing uint8
// see: 36.3 Sensor Reading Conversion Formula
// y = L[(Mx + (B * 10^B_Exp) ) * 10^R_Exp ] units
// LinearizationFunc is the Linearization func. (L of the Sensor Reading Conversion Formula)
//
// [6:0] - enum (linear, ln, log10, log2, e, exp10, exp2, 1/x, sqr(x), cube(x), sqrt(x),
// cube-1 (x) )
// - 70h = non-linear.
// 71h-7Fh = non-linear, OEM defined.
LinearizationFunc LinearizationFunc
ReadingFactors
// Sensor Direction. Indicates whether the sensor is monitoring an input or
// output relative to the given Entity. E.g. if the sensor is monitoring a
// current, this can be used to specify whether it is an input voltage or an
// output voltage.
// 00b = unspecified / not applicable
// 01b = input
// 10b = output
// 11b = reserved
SensorDirection uint8
// Analog Flags
NominalReadingSpecified bool
NormalMaxSpecified bool
NormalMinSpecified bool
// 额定值, 标称值
// Given as a raw value. Must be converted to units-based value using the y=Mx+B
// formula. 1's or 2's complement signed or unsigned per flag bits in Sensor Units 1
//
// Only meaningful when NominalReadingSpecified is true
NominalReadingRaw uint8
// 最大正常值
// Only meaningful when NormalMaxSpecified is true
NormalMaxRaw uint8
// 最小正常值
// Only meaningful when NormalMinSpecified is true
NormalMinRaw uint8
// Given as a raw value. Must be converted to units-based value based using the
// y=Mx+B formula. Signed or unsigned per "signed" bit in sensor flags. Normally
// "FFh" for an 8-bit unsigned sensor, but can be a lesser value if the sensor has a
// restricted range. If max. reading cannot be pre-specified this value should be set
// to max value, based on data format, (e.g. FFh for an unsigned sensor, 7Fh for 2"s
// complement, etc.)
SensorMaxReadingRaw uint8
// Given as a raw value. Must be converted to units-based value using the "y=Mx+B"
// formula. Signed or unsigned per "signed" bit in sensor flags. If min. reading
// cannot be pre-specified this value should be set to min value, based on data
// format, (e.g. 00h for an unsigned sensor, 80h for 2"s complement, etc.)
SensorMinReadingRaw uint8
// Given as raw value.
UNR_Raw uint8
UCR_Raw uint8
UNC_Raw uint8
LNR_Raw uint8
LCR_Raw uint8
LNC_Raw uint8
// Positive hysteresis is defined as the unsigned number of counts that are
// subtracted from the raw threshold values to create the "re-arm" point for all
// positive-going thresholds on the sensor. 0 indicates that there is no hysteresis on
// positive-going thresholds for this sensor. Hysteresis values are given as raw
// counts. That is, to find the degree of hysteresis in units, the value must be
// converted using the "y=Mx+B" formula.
//
// 正向迟滞量
PositiveHysteresisRaw uint8
// Negative hysteresis is defined as the unsigned number of counts that are added
// to the raw threshold value to create the "re-arm" point for all negative-going
// thresholds on the sensor. 0 indicates that there is no hysteresis on negative-going
// thresholds for this sensor.
//
// 负向迟滞量
NegativeHysteresisRaw uint8
IDStringTypeLength TypeLength
IDStringBytes []byte
}
// ConvertReading converts raw sensor reading or raw sensor threshold value to real value in the desired units for the sensor.
func (full *SDRFull) ConvertReading(raw uint8) float64 {
if full.HasAnalogReading() {
return ConvertReading(raw, full.SensorUnit.AnalogDataFormat, full.ReadingFactors, full.LinearizationFunc)
}
return float64(raw)
}
// ConvertSensorHysteresis converts raw sensor hysteresis value to real value in the desired units for the sensor.
func (full *SDRFull) ConvertSensorHysteresis(raw uint8) float64 {
if full.HasAnalogReading() {
return ConvertSensorHysteresis(raw, full.SensorUnit.AnalogDataFormat, full.ReadingFactors, full.LinearizationFunc)
}
return float64(raw)
}
// ConvertSensorTolerance converts raw sensor tolerance value to real value in the desired units for the sensor.
func (full *SDRFull) ConvertSensorTolerance(raw uint8) float64 {
if full.HasAnalogReading() {
return ConvertSensorTolerance(raw, full.SensorUnit.AnalogDataFormat, full.ReadingFactors, full.LinearizationFunc)
}
return float64(raw)
}
func (full *SDRFull) ReadingStr(raw uint8, valid bool) string {
if !valid {
return "unspecified"
}
if !full.SensorUnit.IsAnalog() {
return fmt.Sprintf("%#02x", raw)
}
value := full.ConvertReading(raw)
return fmt.Sprintf("%#02x/%.3f", raw, value)
}
func (full *SDRFull) ReadingMaxStr() string {
maxRaw := full.SensorMaxReadingRaw
analogFormat := full.SensorUnit.AnalogDataFormat
if (analogFormat == SensorAnalogUnitFormat_Unsigned && maxRaw == 0xff) ||
(analogFormat == SensorAnalogUnitFormat_1sComplement && maxRaw == 0x00) ||
(analogFormat == SensorAnalogUnitFormat_2sComplement && maxRaw == 0x7f) ||
(full.SensorUnit.IsAnalog() && full.ConvertReading(maxRaw) == 0.0) {
return "unspecified"
}
return full.ReadingStr(maxRaw, true)
}
func (full *SDRFull) ReadingMinStr() string {
minRaw := full.SensorMinReadingRaw
analogFormat := full.SensorUnit.AnalogDataFormat
if (analogFormat == SensorAnalogUnitFormat_Unsigned && minRaw == 0x00) ||
(analogFormat == SensorAnalogUnitFormat_1sComplement && minRaw == 0xff) ||
(analogFormat == SensorAnalogUnitFormat_2sComplement && minRaw == 0x80) ||
(full.SensorUnit.IsAnalog() && full.ConvertReading(minRaw) == 0.0) {
return "unspecified"
}
return full.ReadingStr(minRaw, true)
}
// ThresholdValueStr formats a threshold value for specified threshold type.
// If the threshold is not readable, return "not readable".
func (full *SDRFull) ThresholdValueStr(thresholdType SensorThresholdType) string {
thresholdAttr := full.SensorThreshold(thresholdType)
return full.ReadingStr(thresholdAttr.Raw, thresholdAttr.Mask.Readable)
}
func (full *SDRFull) HysteresisStr(raw uint8) string {
if !full.SensorUnit.IsAnalog() {
if raw == 0x00 || raw == 0xff {
return "unspecified"
}
return fmt.Sprintf("%#02x", raw)
}
// analog sensor
value := full.ConvertSensorHysteresis(raw)
if raw == 0x00 || raw == 0xff || value == 0.0 {
return "unspecified"
}
return fmt.Sprintf("%#02x/%.3f", raw, value)
}
// SensorThreshold return SensorThreshold for a specified threshold type.
func (full *SDRFull) SensorThreshold(thresholdType SensorThresholdType) SensorThreshold {
switch thresholdType {
case SensorThresholdType_LNR:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.LNR,
Raw: full.LNR_Raw,
}
case SensorThresholdType_LCR:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.LCR,
Raw: full.LCR_Raw,
}
case SensorThresholdType_LNC:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.LNC,
Raw: full.LNC_Raw,
}
case SensorThresholdType_UNC:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.UNC,
Raw: full.UNC_Raw,
}
case SensorThresholdType_UCR:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.UCR,
Raw: full.UCR_Raw,
}
case SensorThresholdType_UNR:
return SensorThreshold{
Type: thresholdType,
Mask: full.Mask.Threshold.UNR,
Raw: full.UNR_Raw,
}
}
return SensorThreshold{
Type: thresholdType,
}
}
func (full *SDRFull) String() string {
// For pure SDR record, there's no reading for a sensor, unless you use
// GetSensorReading command to fetch it.
return "" +
fmt.Sprintf("Sensor ID : %s (%#02x)\n", full.IDStringBytes, full.SensorNumber) +
fmt.Sprintf("Generator ID : %#04x (%s)\n", uint16(full.GeneratorID), full.GeneratorID.String()) +
fmt.Sprintf("Entity ID : %d.%d (%s)\n", uint8(full.SensorEntityID), uint8(full.SensorEntityInstance), full.SensorEntityID.String()) +
fmt.Sprintf("Sensor Type : %s (%#02x) (%s)\n", full.SensorType.String(), uint8(full.SensorType), full.SensorEventReadingType.SensorClass()) +
fmt.Sprintf("Sensor Reading : %.4f (+/- %d) %s\n", full.SensorValue, full.ReadingFactors.Tolerance, full.SensorUnit) +
fmt.Sprintf("Sensor Status : %s\n", full.SensorStatus) +
fmt.Sprintf("Sensor Initialization :%s", "\n") +
fmt.Sprintf(" Settable : %v\n", full.SensorInitialization.Settable) +
fmt.Sprintf(" Scanning : %v\n", full.SensorInitialization.InitScanning) +
fmt.Sprintf(" Events : %v\n", full.SensorInitialization.InitEvents) +
fmt.Sprintf(" Hysteresis : %v\n", full.SensorInitialization.InitHysteresis) +
fmt.Sprintf(" Sensor Type : %v\n", full.SensorInitialization.InitSensorType) +
fmt.Sprintf("Default State :%s", "\n") +
fmt.Sprintf(" Event Generation : %s\n", formatBool(full.SensorInitialization.EventGenerationEnabled, "enabled", "disabled")) +
fmt.Sprintf(" Scanning : %s\n", formatBool(full.SensorInitialization.SensorScanningEnabled, "enabled", "disabled")) +
fmt.Sprintf("Sensor Capabilities :%s", "\n") +
fmt.Sprintf(" Auto Re-arm : %s\n", formatBool(full.SensorCapabilities.AutoRearm, "yes(auto)", "no(manual)")) +
fmt.Sprintf(" Hysteresis Support : %s\n", full.SensorCapabilities.HysteresisAccess.String()) +
fmt.Sprintf(" Threshold Access : %s\n", full.SensorCapabilities.ThresholdAccess) +
fmt.Sprintf(" Ev Message Control : %s\n", full.SensorCapabilities.EventMessageControl) +
fmt.Sprintf("Mask :%s", "\n") +
fmt.Sprintf(" Readable Thresholds : %s\n", strings.Join(full.Mask.ReadableThresholds().Strings(), " ")) +
fmt.Sprintf(" Settable Thresholds : %s\n", strings.Join(full.Mask.SettableThresholds().Strings(), " ")) +
fmt.Sprintf(" Threshold Read Mask : %s\n", strings.Join(full.Mask.StatusReturnedThresholds().Strings(), " ")) +
fmt.Sprintf(" Assertions Enabled : %s\n", strings.Join(full.Mask.SupportedThresholdEvents().FilterAssert().Strings(), " ")) +
fmt.Sprintf(" Deassertions Enabled : %s\n", strings.Join(full.Mask.SupportedThresholdEvents().FilterDeassert().Strings(), " ")) +
fmt.Sprintf("Nominal Reading : %s\n", full.ReadingStr(full.NominalReadingRaw, full.NominalReadingSpecified)) +
fmt.Sprintf("Normal Minimum : %s\n", full.ReadingStr(full.NormalMinRaw, full.NormalMinSpecified)) +
fmt.Sprintf("Normal Maximum : %s\n", full.ReadingStr(full.NormalMaxRaw, full.NormalMaxSpecified)) +
fmt.Sprintf("Lower Non-Recoverable : %s\n", full.ThresholdValueStr(SensorThresholdType_LNR)) +
fmt.Sprintf("Lower Critical : %s\n", full.ThresholdValueStr(SensorThresholdType_LCR)) +
fmt.Sprintf("Lower Non-Critical : %s\n", full.ThresholdValueStr(SensorThresholdType_LNC)) +
fmt.Sprintf("Upper Non-Critical : %s\n", full.ThresholdValueStr(SensorThresholdType_UNC)) +
fmt.Sprintf("Upper Critical : %s\n", full.ThresholdValueStr(SensorThresholdType_UCR)) +
fmt.Sprintf("Upper Non-Recoverable : %s\n", full.ThresholdValueStr(SensorThresholdType_UNR)) +
fmt.Sprintf("Positive Hysteresis : %s\n", full.HysteresisStr(full.PositiveHysteresisRaw)) +
fmt.Sprintf("Negative Hysteresis : %s\n", full.HysteresisStr(full.NegativeHysteresisRaw)) +
fmt.Sprintf("Minimum sensor range : %s\n", full.ReadingMinStr()) +
fmt.Sprintf("Maximum sensor range : %s\n", full.ReadingMaxStr()) +
fmt.Sprintf("SensorDirection : %d\n", full.SensorDirection) +
fmt.Sprintf("LinearizationFunc : %s\n", full.LinearizationFunc) +
fmt.Sprintf("Reading Factors : %s\n", full.ReadingFactors)
}
func parseSDRFullSensor(data []byte, sdr *SDR) error {
const SDRFullSensorMinSize int = 48 // plus the ID String Bytes (optional 16 bytes maximum)
minSize := SDRFullSensorMinSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (full sensor) min size", len(data), minSize)
}
s := &SDRFull{}
sdr.Full = s
generatorID, _, _ := unpackUint16L(data, 5)
s.GeneratorID = GeneratorID(generatorID)
sensorNumber, _, _ := unpackUint8(data, 7)
s.SensorNumber = SensorNumber(sensorNumber)
b8, _, _ := unpackUint8(data, 8)
s.SensorEntityID = EntityID(b8)
b9, _, _ := unpackUint8(data, 9)
s.SensorEntityInstance = EntityInstance(b9 & 0x7f)
s.SensorEntityIsLogical = isBit7Set(b9)
b10, _, _ := unpackUint8(data, 10)
s.SensorInitialization = SensorInitialization{
Settable: isBit7Set(b10),
InitScanning: isBit6Set(b10),
InitEvents: isBit5Set(b10),
InitThresholds: isBit4Set(b10),
InitHysteresis: isBit3Set(b10),
InitSensorType: isBit2Set(b10),
EventGenerationEnabled: isBit1Set(b10),
SensorScanningEnabled: isBit0Set(b10),
}
b11, _, _ := unpackUint8(data, 11)
s.SensorCapabilities = SensorCapabilities{
IgnoreSensorIfNoEntity: isBit7Set(b11),
AutoRearm: isBit6Set(b11),
HysteresisAccess: SensorHysteresisAccess((b11 & 0x3f) >> 4),
ThresholdAccess: SensorThresholdAccess((b11 & 0x0f) >> 2),
EventMessageControl: SensorEventMessageControl(b11 & 0x03),
}
sensorType, _, _ := unpackUint8(data, 12)
s.SensorType = SensorType(sensorType)
eventReadingType, _, _ := unpackUint8(data, 13)
s.SensorEventReadingType = EventReadingType(eventReadingType)
mask := Mask{}
b14, _, _ := unpackUint16(data, 14)
b16, _, _ := unpackUint16(data, 16)
b18, _, _ := unpackUint16(data, 18)
mask.ParseAssertLower(b14)
mask.ParseDeassertUpper(b16)
mask.ParseReading(b18)
s.Mask = mask
b20, _, _ := unpackUint8(data, 20)
b21, _, _ := unpackUint8(data, 21)
b22, _, _ := unpackUint8(data, 22)
s.SensorUnit = SensorUnit{
AnalogDataFormat: SensorAnalogUnitFormat((b20 & 0xc0) >> 6),
RateUnit: SensorRateUnit((b20 & 0x38) >> 4),
ModifierRelation: SensorModifierRelation((b20 & 0x06) >> 2),
Percentage: isBit0Set(b20),
BaseUnit: SensorUnitType(b21),
ModifierUnit: SensorUnitType(b22),
}
b23, _, _ := unpackUint8(data, 23)
s.LinearizationFunc = LinearizationFunc(b23)
b24, _, _ := unpackUint8(data, 24)
b25, _, _ := unpackUint8(data, 25)
m := uint16(b25&0xc0)<<2 | uint16(b24)
s.M = int16(twosComplement(uint32(m), 10))
s.Tolerance = b25 & 0x3f
b26, _, _ := unpackUint8(data, 26)
b27, _, _ := unpackUint8(data, 27)
b28, _, _ := unpackUint8(data, 28)
b := uint16(b27&0xc0)<<2 | uint16(b26)
s.B = int16(twosComplement(uint32(b), 10))
s.Accuracy = uint16(b28&0xf0)<<2 | uint16(b27&0x3f)
s.Accuracy_Exp = (b28 & 0x0c) >> 2
s.SensorDirection = b28 & 0x03
b29, _, _ := unpackUint8(data, 29)
rExp := uint8((b29 & 0xf0) >> 4)
s.R_Exp = int8(twosComplement(uint32(rExp), 4))
bExp := uint8(b29 & 0x0f)
s.B_Exp = int8(twosComplement(uint32(bExp), 4))
b30, _, _ := unpackUint8(data, 30)
s.NormalMinSpecified = isBit2Set(b30)
s.NormalMaxSpecified = isBit1Set(b30)
s.NominalReadingSpecified = isBit0Set(b30)
s.NominalReadingRaw, _, _ = unpackUint8(data, 31)
s.NormalMaxRaw, _, _ = unpackUint8(data, 32)
s.NormalMinRaw, _, _ = unpackUint8(data, 33)
s.SensorMaxReadingRaw, _, _ = unpackUint8(data, 34)
s.SensorMinReadingRaw, _, _ = unpackUint8(data, 35)
s.UNR_Raw, _, _ = unpackUint8(data, 36)
s.UCR_Raw, _, _ = unpackUint8(data, 37)
s.UNC_Raw, _, _ = unpackUint8(data, 38)
s.LNR_Raw, _, _ = unpackUint8(data, 39)
s.LCR_Raw, _, _ = unpackUint8(data, 40)
s.LNC_Raw, _, _ = unpackUint8(data, 41)
s.PositiveHysteresisRaw, _, _ = unpackUint8(data, 42)
s.NegativeHysteresisRaw, _, _ = unpackUint8(data, 43)
typeLength, _, _ := unpackUint8(data, 47)
s.IDStringTypeLength = TypeLength(typeLength)
idStrLen := int(s.IDStringTypeLength.Length())
if len(data) < minSize+idStrLen {
return ErrNotEnoughDataWith("sdr (full sensor)", len(data), minSize+idStrLen)
}
s.IDStringBytes, _, _ = unpackBytes(data, minSize, idStrLen)
return nil
}
func (full *SDRFull) HasAnalogReading() bool {
// Todo, logic is not clear.
/*
* Per the IPMI Specification:
* Only Full Threshold sensors are identified as providing
* analog readings.
*
* But... HP didn't interpret this as meaning that "Only Threshold
* Sensors" can provide analog readings. So, HP packed analog
* readings into some of their non-Threshold Sensor. There is
* nothing that explicitly prohibits this in the spec, so if
* an Analog reading is available in a Non-Threshold sensor and
* there are units specified for identifying the reading then
* we do an analog conversion even though the sensor is
* non-Threshold. To be safe, we provide this extension for
* HP.
*
*/
if full.SensorEventReadingType.IsThreshold() {
// for threshold sensors
return true
}
if full.SensorUnit.IsAnalog() {
return true
}
// for non-threshold sensors, but the analog data format indicates analog.
// this rarely exists, except HP.
// Todo
return false
}
|