1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
package ipmi
import "fmt"
// 43.3 SDR Type 03h, Event-Only Record
type SDREventOnly struct {
//
// Record KEY
//
GeneratorID GeneratorID
SensorNumber SensorNumber // Unique number identifying the sensor behind a given slave address and LUN. Code FFh reserved.
//
// RECORD BODY
//
SensorEntityID EntityID
SensorEntityInstance EntityInstance
// 0b = treat entity as a physical entity per Entity ID table
// 1b = treat entity as a logical container entity. For example, if this bit is set,
// and the Entity ID is "Processor", the container entity would be considered
// to represent a logical "Processor Group" rather than a physical processor.
// This bit is typically used in conjunction with an Entity Association record.
SensorEntityIsLogical bool
SensorType SensorType
SensorEventReadingType EventReadingType
SensorDirection uint8
IDStringInstanceModifierType uint8
// Share count (number of sensors sharing this record). Sensor numbers sharing this
// record are sequential starting with the sensor number specified by the Sensor
// Number field for this record. E.g. if the starting sensor number was 10, and the share
// count was 3, then sensors 10, 11, and 12 would share this record.
ShareCount uint8
EntityInstanceSharing bool
// Multiple Discrete sensors can share the same sensor data record. The ID String Instance
// Modifier and Modifier Offset are used to modify the Sensor ID String as follows:
// Suppose sensor ID is "Temp " for "Temperature Sensor", share count = 3, ID string
// instance modifier = numeric, instance modifier offset = 5 - then the sensors could be
// identified as:
// Temp 5, Temp 6, Temp 7
// If the modifier = alpha, and offset = 26, then the sensors could be identified as:
// Temp AA, Temp AB, Temp AC
// (alpha characters are considered to be base 26 for ASCII)
IDStringInstanceModifierOffset uint8
IDStringTypeLength TypeLength
IDStringBytes []byte
}
func (eventOnly *SDREventOnly) String() string {
return "" +
fmt.Sprintf(" Sensor ID : %s (%#02x)\n",
string(eventOnly.IDStringBytes), eventOnly.SensorNumber) +
fmt.Sprintf(" Generator ID : %#04x (%s)\n",
uint16(eventOnly.GeneratorID), eventOnly.GeneratorID.String()) +
fmt.Sprintf(" Entity ID : %d.%d (%s)\n",
uint8(eventOnly.SensorEntityID), uint8(eventOnly.SensorEntityInstance), eventOnly.SensorEntityID.String()) +
fmt.Sprintf(" Sensor Type : %s (%#02x) (%s)\n",
eventOnly.SensorType.String(), uint8(eventOnly.SensorType), eventOnly.SensorEventReadingType.SensorClass())
}
func parseSDREventOnly(data []byte, sdr *SDR) error {
const SDREventOnlyMinSize int = 17
minSize := SDREventOnlyMinSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (event-only sensor) min size", len(data), minSize)
}
s := &SDREventOnly{}
sdr.EventOnly = s
generatorID, _, _ := unpackUint16L(data, 5)
s.GeneratorID = GeneratorID(generatorID)
sensorNumber, _, _ := unpackUint8(data, 7)
s.SensorNumber = SensorNumber(sensorNumber)
b8, _, _ := unpackUint8(data, 8)
s.SensorEntityID = EntityID(b8)
b9, _, _ := unpackUint8(data, 9)
s.SensorEntityInstance = EntityInstance(b9 & 0x7f)
s.SensorEntityIsLogical = isBit7Set(b9)
sensorType, _, _ := unpackUint8(data, 10)
s.SensorType = SensorType(sensorType)
eventReadingType, _, _ := unpackUint8(data, 11)
s.SensorEventReadingType = EventReadingType(eventReadingType)
typeLength, _, _ := unpackUint8(data, 16)
s.IDStringTypeLength = TypeLength(typeLength)
idStrLen := int(s.IDStringTypeLength.Length())
if len(data) < minSize+idStrLen {
return ErrNotEnoughDataWith("sdr (event-only sensor)", len(data), minSize+idStrLen)
}
s.IDStringBytes, _, _ = unpackBytes(data, minSize, idStrLen)
return nil
}
// 43.4 SDR Type 08h - Entity Association Record
type SDREntityAssociation struct {
//
// Record KEY
//
ContainerEntityID uint8
ContainerEntityInstance uint8
// [7] - 0b = contained entities specified as list
// 1b = contained entities specified as range
ContainedEntitiesAsRange bool
// [6] - Record Link
// 0b = no linked Entity Association records
// 1b = linked Entity Association records exist
LinkedEntityAssociationExist bool
// [5] - 0b = Container entity and contained entities can be assumed absent
// if presence sensor for container entity cannot be accessed.
// This value is also used if the entity does not have a presence sensor.
// 1b = Presence sensor should always be accessible. Software should consider
// it an error if the presence sensor associated with the container entity
// is not accessible. If a presence sensor is accessible, then the
// presence sensor can still report that the container entity is absent.
PresenceSensorAlwaysAccessible bool
ContainedEntity1ID uint8
ContainedEntity1Instance uint8
//
// RECORD BODY
//
ContainedEntity2ID uint8
ContainedEntity2Instance uint8
ContainedEntity3ID uint8
ContainedEntity3Instance uint8
ContainedEntity4ID uint8
ContainedEntity4Instance uint8
}
func parseSDREntityAssociation(data []byte, sdr *SDR) error {
const SDREntityAssociationSize int = 16
if len(data) < SDREntityAssociationSize {
return ErrNotEnoughDataWith("sdr (entity association)", len(data), SDREntityAssociationSize)
}
s := &SDREntityAssociation{}
sdr.EntityAssociation = s
s.ContainerEntityID, _, _ = unpackUint8(data, 5)
s.ContainerEntityInstance, _, _ = unpackUint8(data, 6)
flag, _, _ := unpackUint8(data, 7)
s.ContainedEntitiesAsRange = isBit7Set(flag)
s.LinkedEntityAssociationExist = isBit6Set(flag)
s.PresenceSensorAlwaysAccessible = isBit5Set(flag)
s.ContainedEntity1ID, _, _ = unpackUint8(data, 8)
s.ContainedEntity1Instance, _, _ = unpackUint8(data, 9)
s.ContainedEntity2ID, _, _ = unpackUint8(data, 10)
s.ContainedEntity2Instance, _, _ = unpackUint8(data, 11)
s.ContainedEntity3ID, _, _ = unpackUint8(data, 12)
s.ContainedEntity3Instance, _, _ = unpackUint8(data, 13)
s.ContainedEntity4ID, _, _ = unpackUint8(data, 14)
s.ContainedEntity4Instance, _, _ = unpackUint8(data, 15)
return nil
}
// 43.5 SDR Type 09h - Device-relative Entity Association Record
type SDRDeviceRelative struct {
//
// Record KEY
//
ContainerEntityID uint8
ContainerEntityInstance uint8
ContainerEntityDeviceAddress uint8
ContainerEntityDeviceChannel uint8
// [7] - 0b = contained entities specified as list
// 1b = contained entities specified as range
ContainedEntitiesAsRange bool
// [6] - Record Link
// 0b = no linked Entity Association records
// 1b = linked Entity Association records exist
LinkedEntityAssociationExist bool
// [5] - 0b = Container entity and contained entities can be assumed absent
// if presence sensor for container entity cannot be accessed.
// This value is also used if the entity does not have a presence sensor.
// 1b = Presence sensor should always be accessible. Software should consider
// it an error if the presence sensor associated with the container entity
// is not accessible. If a presence sensor is accessible, then the
// presence sensor can still report that the container entity is absent.
PresenceSensorAlwaysAccessible bool
ContainedEntity1DeviceAddress uint8
ContainedEntity1DeviceChannel uint8
ContainedEntity1ID uint8
ContainedEntity1Instance uint8
//
// RECORD BODY
//
ContainedEntity2DeviceAddress uint8
ContainedEntity2DeviceChannel uint8
ContainedEntity2ID uint8
ContainedEntity2Instance uint8
ContainedEntity3DeviceAddress uint8
ContainedEntity3DeviceChannel uint8
ContainedEntity3ID uint8
ContainedEntity3Instance uint8
ContainedEntity4DeviceAddress uint8
ContainedEntity4DeviceChannel uint8
ContainedEntity4ID uint8
ContainedEntity4Instance uint8
}
func parseSDRDeviceRelativeEntityAssociation(data []byte, sdr *SDR) error {
const SDRDeviceRelativeEntityAssociationSize = 32
if len(data) < SDRDeviceRelativeEntityAssociationSize {
return ErrNotEnoughDataWith("sdr (device-relative entity association)", len(data), SDRDeviceRelativeEntityAssociationSize)
}
s := &SDRDeviceRelative{}
sdr.DeviceRelative = s
s.ContainerEntityID, _, _ = unpackUint8(data, 5)
s.ContainerEntityInstance, _, _ = unpackUint8(data, 6)
s.ContainerEntityDeviceAddress, _, _ = unpackUint8(data, 7)
s.ContainerEntityDeviceChannel, _, _ = unpackUint8(data, 8)
flag, _, _ := unpackUint8(data, 9)
s.ContainedEntitiesAsRange = isBit7Set(flag)
s.LinkedEntityAssociationExist = isBit6Set(flag)
s.PresenceSensorAlwaysAccessible = isBit5Set(flag)
s.ContainedEntity1DeviceAddress, _, _ = unpackUint8(data, 10)
s.ContainedEntity1DeviceChannel, _, _ = unpackUint8(data, 11)
s.ContainedEntity1ID, _, _ = unpackUint8(data, 12)
s.ContainedEntity1Instance, _, _ = unpackUint8(data, 13)
s.ContainedEntity2DeviceAddress, _, _ = unpackUint8(data, 14)
s.ContainedEntity2DeviceChannel, _, _ = unpackUint8(data, 15)
s.ContainedEntity2ID, _, _ = unpackUint8(data, 16)
s.ContainedEntity2Instance, _, _ = unpackUint8(data, 17)
s.ContainedEntity3DeviceAddress, _, _ = unpackUint8(data, 18)
s.ContainedEntity3DeviceChannel, _, _ = unpackUint8(data, 19)
s.ContainedEntity3ID, _, _ = unpackUint8(data, 20)
s.ContainedEntity3Instance, _, _ = unpackUint8(data, 21)
s.ContainedEntity4DeviceAddress, _, _ = unpackUint8(data, 22)
s.ContainedEntity4DeviceChannel, _, _ = unpackUint8(data, 23)
s.ContainedEntity4ID, _, _ = unpackUint8(data, 24)
s.ContainedEntity4Instance, _, _ = unpackUint8(data, 25)
unpackBytes(data, 26, 6) // last 6 bytes reserved
return nil
}
// 43.7 SDR Type 10h - Generic Device Locator Record
// This record is used to store the location and type information for devices
// on the IPMB or management controller private busses that are neither
// IPMI FRU devices nor IPMI management controllers.
//
// These devices can either be common non-intelligent I2C devices, special management ASICs, or proprietary controllers.
//
// IPMI FRU Devices and Management Controllers are located via the FRU Device Locator
// and Management Controller Device Locator records described in following sections.
type SDRGenericDeviceLocator struct {
//
// Record KEY
//
DeviceAccessAddress uint8 // Slave address of management controller used to access device. 0000000b if device is directly on IPMB
DeviceSlaveAddress uint8
ChannelNumber uint8 // Channel number for management controller used to access device
AccessLUN uint8 // LUN for Master Write-Read command. 00b if device is non-intelligent device directly on IPMB.
PrivateBusID uint8 // Private bus ID if bus = Private. 000b if device directly on IPMB
//
// RECORD BODY
//
AddressSpan uint8
DeviceType uint8
DeviceTypeModifier uint8
EntityID uint8
EntityInstance uint8
DeviceIDTypeLength TypeLength
DeviceIDString []byte // Short ID string for the device
}
func parseSDRGenericLocator(data []byte, sdr *SDR) error {
const SDRGenericLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
minSize := SDRGenericLocatorMinSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (generic-locator) min size", len(data), minSize)
}
s := &SDRGenericDeviceLocator{}
sdr.GenericDeviceLocator = s
s.DeviceAccessAddress, _, _ = unpackUint8(data, 5)
b, _, _ := unpackUint8(data, 6)
s.DeviceSlaveAddress = b
c, _, _ := unpackUint8(data, 7)
s.ChannelNumber = ((b & 0x01) << 4) | (c >> 5)
s.AccessLUN = (c & 0x1f) >> 3
s.PrivateBusID = (c & 0x07)
s.AddressSpan, _, _ = unpackUint8(data, 8)
s.DeviceType, _, _ = unpackUint8(data, 10)
s.DeviceTypeModifier, _, _ = unpackUint8(data, 11)
s.EntityID, _, _ = unpackUint8(data, 12)
s.EntityInstance, _, _ = unpackUint8(data, 13)
typeLength, _, _ := unpackUint8(data, 15)
s.DeviceIDTypeLength = TypeLength(typeLength)
idStrLen := int(s.DeviceIDTypeLength.Length())
if len(data) < minSize+idStrLen {
return ErrNotEnoughDataWith("sdr (generic-locator)", len(data), minSize+idStrLen)
}
s.DeviceIDString, _, _ = unpackBytes(data, minSize, idStrLen)
return nil
}
// 43.8 SDR Type 11h - FRU Device Locator Record
// 38. Accessing FRU Devices
type SDRFRUDeviceLocator struct {
//
// Record KEY
//
// [7:1] - Slave address of controller used to access device. 0000000b if device is directly on IPMB.
// This field indicates whether the device is on a private bus or not.
DeviceAccessAddress uint8
// FRU Device ID / Device Slave Address
//
// For Logical FRU DEVICE (accessed via FRU commands to mgmt. controller):
// [7:0] - Number identifying FRU device within given IPM Controller. FFh = reserved.
// The primary FRU device for a management controller is always device #0 at
// LUN 00b. The primary FRU device is not reported via this FRU Device Locator
// record - its presence is identified via the Device Capabilities field in the
// Management Controller Device Locator record.
//
// For non-intelligent FRU device:
// [7:1] - 7-bit I2C Slave Address
// This is relative to the bus the device is on.
// For devices on the IPMB, this is the slave address of the device on the IPMB.
// For devices on a private bus, this is the slave address of the device on the private bus.
// [0] - reserved
FRUDeviceID_SlaveAddress uint8
// [7] - logical/physical FRU device
// 0b = device is not a logical FRU Device (a physical device, that is a non-intelligent device)
// 1b = device is logical FRU Device (accessed via FRU commands to mgmt. controller)
IsLogicalFRUDevice bool
// [4:3] - LUN for Read/Write FRU Data Command or Master Write-Read command.
AccessLUN uint8
// [2:0] - Private bus ID if bus = Private.
// 000b if device directly on IPMB, or device is a logical FRU Device.
//
// three bits, total eight bus ids, 000 ~ 111, (0 ~ 7)
PrivateBusID uint8
// [7:4] - Channel number for management controller used to access device.
// 000b if device directly on the primary IPMB, or if controller is on the primary IPMB.
// Msbit for channel number is kept in next byte.
// (For IPMI v1.5. This byte position was reserved for IPMI v1.0.)
//
// [3:0] - reserved
ChannelNumber uint8
//
// RECORD BODY
//
DeviceType DeviceType
DeviceTypeModifier uint8
FRUEntityID uint8
FRUEntityInstance uint8
DeviceIDTypeLength TypeLength
DeviceIDBytes []byte // Short ID string for the FRU Device
}
// Table 38-1, FRU Device Locator Field Usage
func (sdrFRU *SDRFRUDeviceLocator) Location() FRULocation {
if sdrFRU.IsLogicalFRUDevice {
return FRULocation_MgmtController
}
if sdrFRU.DeviceAccessAddress == 0x00 {
return FRULocation_IPMB
}
return FRULocation_PrivateBus
}
func parseSDRFRUDeviceLocator(data []byte, sdr *SDR) error {
const SDRFRUDeviceLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
minSize := SDRFRUDeviceLocatorMinSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (fru device) min size", len(data), minSize)
}
s := &SDRFRUDeviceLocator{}
sdr.FRUDeviceLocator = s
b5, _, _ := unpackUint8(data, 5)
s.DeviceAccessAddress = b5
b7, _, _ := unpackUint8(data, 6)
// Todo
s.FRUDeviceID_SlaveAddress = b7
b8, _, _ := unpackUint8(data, 7)
s.IsLogicalFRUDevice = isBit7Set(b8)
s.AccessLUN = (b8 & 0x1f) >> 3
s.PrivateBusID = b8 & 0x07
b9, _, _ := unpackUint8(data, 8)
s.ChannelNumber = b9 >> 4
deviceType, _, _ := unpackUint8(data, 10)
s.DeviceType = DeviceType(deviceType)
s.DeviceTypeModifier, _, _ = unpackUint8(data, 11)
s.FRUEntityID, _, _ = unpackUint8(data, 12)
s.FRUEntityInstance, _, _ = unpackUint8(data, 13)
// index 14 Reserved for OEM use.
typeLength, _, _ := unpackUint8(data, 15)
s.DeviceIDTypeLength = TypeLength(typeLength)
var idStrLen int
if s.DeviceIDTypeLength.TypeCode() == 0x00 {
// unspecified type
idStrLen = len(data) - minSize
} else {
idStrLen = int(s.DeviceIDTypeLength.Length())
}
if len(data) < minSize+idStrLen {
return ErrNotEnoughDataWith("sdr (fru device)", len(data), minSize+idStrLen)
}
s.DeviceIDBytes, _, _ = unpackBytes(data, minSize, idStrLen)
return nil
}
// 43.9 SDR Type 12h - Management Controller Device Locator Record
type SDRMgmtControllerDeviceLocator struct {
//
// Record KEY
//
DeviceSlaveAddress uint8 // 7-bit I2C Slave Address[1] of device on channel
ChannelNumber uint8
//
// RECORD BODY
//
ACPISystemPowerStateNotificationRequired bool
ACPIDevicePowerStateNotificationRequired bool
ControllerLogsInitializationAgentErrors bool
LogInitializationAgentErrors bool
DeviceCap_ChassisDevice bool // device functions as chassis device
DeviceCap_Bridge bool // Controller responds to Bridge NetFn command
DeviceCap_IPMBEventGenerator bool // device generates event messages on IPMB
DeviceCap_IPMBEventReceiver bool // device accepts event messages from IPMB
DeviceCap_FRUInventoryDevice bool // accepts FRU commands to FRU Device #0 at LUN 00b
DeviceCap_SELDevice bool // provides interface to SEL
DeviceCap_SDRRepoDevice bool // For BMC, indicates BMC provides interface to 1b = SDR Repository. For other controller, indicates controller accepts Device SDR commands
DeviceCap_SensorDevice bool // device accepts sensor commands
EntityID uint8
EntityInstance uint8
DeviceIDTypeLength TypeLength
DeviceIDBytes []byte
}
func parseSDRManagementControllerDeviceLocator(data []byte, sdr *SDR) error {
const SDRManagementControllerDeviceLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
minSize := SDRManagementControllerDeviceLocatorMinSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (mgmt controller device locator) min size", len(data), minSize)
}
s := &SDRMgmtControllerDeviceLocator{}
sdr.MgmtControllerDeviceLocator = s
b6, _, _ := unpackUint8(data, 5)
s.DeviceSlaveAddress = b6
b7, _, _ := unpackUint8(data, 6)
s.ChannelNumber = b7
b8, _, _ := unpackUint8(data, 7)
s.ACPISystemPowerStateNotificationRequired = isBit7Set(b8)
s.ACPIDevicePowerStateNotificationRequired = isBit6Set(b8)
s.ControllerLogsInitializationAgentErrors = isBit3Set(b8)
s.LogInitializationAgentErrors = isBit2Set(b8)
b9, _, _ := unpackUint8(data, 8)
s.DeviceCap_ChassisDevice = isBit7Set(b9)
s.DeviceCap_Bridge = isBit6Set(b9)
s.DeviceCap_IPMBEventGenerator = isBit5Set(b9)
s.DeviceCap_IPMBEventReceiver = isBit4Set(b9)
s.DeviceCap_FRUInventoryDevice = isBit3Set(b9)
s.DeviceCap_SELDevice = isBit2Set(b9)
s.DeviceCap_SDRRepoDevice = isBit1Set(b9)
s.DeviceCap_SensorDevice = isBit0Set(b9)
s.EntityID, _, _ = unpackUint8(data, 12)
s.EntityInstance, _, _ = unpackUint8(data, 13)
typeLength, _, _ := unpackUint8(data, 15)
s.DeviceIDTypeLength = TypeLength(typeLength)
idStrLen := int(s.DeviceIDTypeLength.Length())
if len(data) < minSize+idStrLen {
return ErrNotEnoughDataWith("sdr (mgmt controller device locator)", len(data), minSize+idStrLen)
}
s.DeviceIDBytes, _, _ = unpackBytes(data, minSize, idStrLen)
return nil
}
// 43.10 SDR Type 13h - Management Controller Confirmation Record
type SDRMgmtControllerConfirmation struct {
//
// Record KEY
//
DeviceSlaveAddress uint8 // 7-bit I2C Slave Address[1] of device on IPMB.
DeviceID uint8
ChannelNumber uint8
DeviceRevision uint8
//
// RECORD BODY
//
FirmwareMajorRevision uint8 // [6:0] - Major Firmware Revision, binary encoded.
FirmwareMinorRevision uint8 // Minor Firmware Revision. BCD encoded.
// IPMI Version from Get Device ID command. Holds IPMI Command Specification
// Version. BCD encoded. 00h = reserved. Bits 7:4 hold the Least Significant digit of the
// revision, while bits 3:0 hold the Most Significant bits. E.g. a value of 01h indicates
// revision 1.0
MajorIPMIVersion uint8
MinorIPMIVersion uint8
ManufacturerID uint32 // 3 bytes only
ProductID uint16
DeviceGUID []byte // 16 bytes
}
func parseSDRManagementControllerConfirmation(data []byte, sdr *SDR) error {
const SDRManagementControllerConfirmationSize = 32
minSize := SDRManagementControllerConfirmationSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (mgmt controller confirmation) min size", len(data), minSize)
}
s := &SDRMgmtControllerConfirmation{}
sdr.MgmtControllerConfirmation = s
b6, _, _ := unpackUint8(data, 5)
s.DeviceSlaveAddress = b6
s.DeviceID, _, _ = unpackUint8(data, 6)
b8, _, _ := unpackUint8(data, 7)
s.ChannelNumber = b8 >> 4
s.DeviceRevision = b8 & 0x0f
b9, _, _ := unpackUint8(data, 8)
s.FirmwareMajorRevision = b9 & 0x7f
s.FirmwareMinorRevision, _, _ = unpackUint8(data, 9)
ipmiVersionBCD, _, _ := unpackUint8(data, 10)
s.MajorIPMIVersion = ipmiVersionBCD & 0x0f
s.MinorIPMIVersion = ipmiVersionBCD >> 4
s.ManufacturerID, _, _ = unpackUint24L(data, 11)
s.ProductID, _, _ = unpackUint16L(data, 14)
s.DeviceGUID, _, _ = unpackBytes(data, 16, 16)
return nil
}
// 43.11 SDR Type 14h - BMC Message Channel Info Record
type SDRBMCChannelInfo struct {
//
// NO Record KEY
//
//
// RECORD BODY
//
Channel0 ChannelInfo
Channel1 ChannelInfo
Channel2 ChannelInfo
Channel3 ChannelInfo
Channel4 ChannelInfo
Channel5 ChannelInfo
Channel6 ChannelInfo
Channel7 ChannelInfo
MessagingInterruptType uint8
EventMessageBufferInterruptType uint8
}
type ChannelInfo struct {
TransmitSupported bool // false means receive message queue access only
MessageReceiveLUN uint8
ChannelProtocol uint8
}
func parseChannelInfo(b uint8) ChannelInfo {
return ChannelInfo{
TransmitSupported: isBit7Set(b),
MessageReceiveLUN: (b & 0x7f) >> 4,
ChannelProtocol: b & 0x0f,
}
}
func parseSDRBMCMessageChannelInfo(data []byte, sdr *SDR) error {
const SDRBMCMessageChannelInfoSize = 16
minSize := SDRBMCMessageChannelInfoSize
if len(data) < minSize {
return ErrNotEnoughDataWith("sdr (bmc message channel info) min size", len(data), minSize)
}
s := &SDRBMCChannelInfo{}
sdr.BMCChannelInfo = s
s.Channel0 = parseChannelInfo(data[5])
s.Channel1 = parseChannelInfo(data[6])
s.Channel2 = parseChannelInfo(data[7])
s.Channel3 = parseChannelInfo(data[8])
s.Channel4 = parseChannelInfo(data[9])
s.Channel5 = parseChannelInfo(data[10])
s.Channel6 = parseChannelInfo(data[11])
s.Channel7 = parseChannelInfo(data[12])
s.MessagingInterruptType, _, _ = unpackUint8(data, 13)
s.EventMessageBufferInterruptType, _, _ = unpackUint8(data, 14)
return nil
}
// 43.12 SDR Type C0h - OEM Record
type SDROEM struct {
//
// NO Record KEY
//
//
// RECORD BODY
//
ManufacturerID uint32 // 3 bytes only
OEMData []byte
}
func parseSDROEM(data []byte, sdr *SDR) error {
const SDROEMMinSize = 8
const SDROEMMaxSize = 64 // OEM defined records are limited to a maximum of 64 bytes, including the header
if len(data) < SDROEMMinSize {
return ErrNotEnoughDataWith("sdr (oem) min size", len(data), SDROEMMinSize)
}
s := &SDROEM{}
sdr.OEM = s
s.ManufacturerID, _, _ = unpackUint24L(data, 5)
s.OEMData, _, _ = unpackBytesMost(data, 8, SDROEMMaxSize-8)
return nil
}
// 43.6 SDR Type 0Ah:0Fh - Reserved Records
type SDRReserved struct {
}
// 43.15 Type/Length Byte Format
//
// 7:6 00 = Unicode
// 00b define a Unicode string in the IPMI specification,
// whereas they specify a binary field in the Platform Management FRU specification.
// 01 = BCD plus (see below)
// 10 = 6-bit ASCII, packed
// 11 = 8-bit ASCII + Latin 1.
// At least two bytes of data must be present when this type is used.
// Therefore, the length (number of data bytes) will be >1 if data is present,
// 0 if data is not present. A length of 1 is reserved.
// 5 reserved.
// the bit 5 is reserved in the IPMI specification type/length byte,
// where it is part of the length field in the Platform Management FRU specification
// 4:0 length of following data, in characters.
// 00000b indicates 'none following'.
// 11111b = reserved.
type TypeLength uint8
func (tl TypeLength) String() string {
return fmt.Sprintf("Byte: (%#02x) / Type: (%s) / Length: %d / Size: %d", uint8(tl), tl.Type(), tl.Length(), tl.Size())
}
func (tl TypeLength) Type() string {
typecode := tl.TypeCode()
var s string
switch typecode {
case 0:
s = "Binary"
case 1:
s = "BCD plus"
case 2:
s = "6-bit ASCII"
case 3:
s = "8-bit ASCII"
}
return s
}
func (tl TypeLength) TypeCode() uint8 {
return (uint8(tl) & 0xc0) >> 6 // the highest 2 bits
}
// Length returns the length of bytes occupied that packed the chars.
// But it is not the length of chars.
// For BCD plus type, one byte packs two chars.
func (tl TypeLength) Length() uint8 {
return uint8(tl) & 0x3f // the lowest 6 bits
}
// Size returns the length of chars.
func (tl TypeLength) Size() uint8 {
typecode := tl.TypeCode()
l := tl.Length()
var size uint8
switch typecode {
case 0: /* 00b: binary data */
size = l
case 1: /* 01b: BCD plus (binary-coded decimal) */
// one byte packs two chars
/* hex dump or BCD -> 2x length */
size = l * 2
case 2: /* 10b: 6-bit ASCII packed */
// three bytes packs four chars
/* 4 chars per group of 1-3 bytes, round up to 4 bytes boundary */
size = (l/3 + 1) * 4
case 3: /* 11b: 8-bit ASCII + Latin 1 */
/* no length adjustment */
size = l
}
return size
}
// Chars decodes the raw bytes to ASCII chars according to the encoding type code of TypeLength
func (tl TypeLength) Chars(raw []byte) (chars []byte, err error) {
if len(raw) != int(tl.Length()) {
err = fmt.Errorf("passed raw not equal to length")
return
}
size := int(tl.Size())
chars = make([]byte, size)
switch tl.TypeCode() {
case 0: // 00b - Binary
for i := 0; i < size; i++ {
chars[i] = raw[i]
}
case 1: // 01b - BCD Plus
var bcdPlusChars = [16]byte{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', '-', '.', ':', ',', '_'}
for i := 0; i < size; i++ {
var charIndex uint8
if i%2 == 0 {
charIndex = raw[i/2] >> 0 & 0x0f
} else {
charIndex = raw[i/2] >> 4
}
chars[i] = bcdPlusChars[charIndex]
}
case 2: // 10b - 6-bit ASCII
// 6-bit ASCII definition
var ascii6bit = [64]byte{
' ', '!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?',
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\\', ']', '^', '_',
}
var leftover byte
var s []byte
for i := 0; i < len(raw); i++ {
// every 3 bytes pack 4 chars, so we can calculate
// character positions in a byte based on the remainder of division by 3.
switch i % 3 {
case 0:
idx := raw[i] & 0x3f // 6 right bits are an index of one char
leftover = (raw[i] & 0xc0) >> 6 // 2 left bits are leftovers
s = append(s, ascii6bit[idx])
case 1:
idx := leftover | (raw[i]&0x0f)<<2 // index of one char is 2-bit leftover as prefix plus 4 right bits
leftover = (raw[i] & 0xf0) >> 4 // 4 left bits are leftovers
s = append(s, ascii6bit[idx])
case 2:
idx := (raw[i]&0x03)<<4 | leftover // index of one char is 2 right bits plus 4-bit leftover as suffix
leftover = 0 // cleanup leftover calculation
s = append(s, ascii6bit[idx])
idx = (raw[i] & 0xfc) >> 2 // 6 left bits are an index of one char
s = append(s, ascii6bit[idx])
}
}
chars = s
case 3: // 11b - 8-bit ASCII
for i := 0; i < size; i++ {
chars[i] = raw[i]
}
}
return
}
|