File: types_sdr_others.go

package info (click to toggle)
golang-github-bougou-go-ipmi 0.7.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,880 kB
  • sloc: makefile: 38
file content (868 lines) | stat: -rw-r--r-- 27,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
package ipmi

import "fmt"

// 43.3 SDR Type 03h, Event-Only Record
type SDREventOnly struct {
	//
	// Record KEY
	//

	GeneratorID  GeneratorID
	SensorNumber SensorNumber // Unique number identifying the sensor behind a given slave address and LUN. Code FFh reserved.

	//
	// RECORD BODY
	//

	SensorEntityID       EntityID
	SensorEntityInstance EntityInstance
	// 0b = treat entity as a physical entity per Entity ID table
	// 1b = treat entity as a logical container entity. For example, if this bit is set,
	// and the Entity ID is "Processor", the container entity would be considered
	// to represent a logical "Processor Group" rather than a physical processor.
	// This bit is typically used in conjunction with an Entity Association record.
	SensorEntityIsLogical bool

	SensorType             SensorType
	SensorEventReadingType EventReadingType

	SensorDirection uint8

	IDStringInstanceModifierType uint8

	// Share count (number of sensors sharing this record). Sensor numbers sharing this
	// record are sequential starting with the sensor number specified by the Sensor
	// Number field for this record. E.g. if the starting sensor number was 10, and the share
	// count was 3, then sensors 10, 11, and 12 would share this record.
	ShareCount uint8

	EntityInstanceSharing bool

	// Multiple Discrete sensors can share the same sensor data record. The ID String Instance
	// Modifier and Modifier Offset are used to modify the Sensor ID String as follows:
	// Suppose sensor ID is "Temp " for "Temperature Sensor", share count = 3, ID string
	// instance modifier = numeric, instance modifier offset = 5 - then the sensors could be
	// identified as:
	// Temp 5, Temp 6, Temp 7
	// If the modifier = alpha, and offset = 26, then the sensors could be identified as:
	// Temp AA, Temp AB, Temp AC
	// (alpha characters are considered to be base 26 for ASCII)
	IDStringInstanceModifierOffset uint8

	IDStringTypeLength TypeLength
	IDStringBytes      []byte
}

func (eventOnly *SDREventOnly) String() string {
	return "" +
		fmt.Sprintf("    Sensor ID             : %s (%#02x)\n",
			string(eventOnly.IDStringBytes), eventOnly.SensorNumber) +
		fmt.Sprintf("    Generator ID          : %#04x (%s)\n",
			uint16(eventOnly.GeneratorID), eventOnly.GeneratorID.String()) +
		fmt.Sprintf("    Entity ID             : %d.%d (%s)\n",
			uint8(eventOnly.SensorEntityID), uint8(eventOnly.SensorEntityInstance), eventOnly.SensorEntityID.String()) +
		fmt.Sprintf("    Sensor Type           : %s (%#02x) (%s)\n",
			eventOnly.SensorType.String(), uint8(eventOnly.SensorType), eventOnly.SensorEventReadingType.SensorClass())
}

func parseSDREventOnly(data []byte, sdr *SDR) error {
	const SDREventOnlyMinSize int = 17
	minSize := SDREventOnlyMinSize
	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (event-only sensor) min size", len(data), minSize)
	}

	s := &SDREventOnly{}
	sdr.EventOnly = s

	generatorID, _, _ := unpackUint16L(data, 5)
	s.GeneratorID = GeneratorID(generatorID)

	sensorNumber, _, _ := unpackUint8(data, 7)
	s.SensorNumber = SensorNumber(sensorNumber)

	b8, _, _ := unpackUint8(data, 8)
	s.SensorEntityID = EntityID(b8)

	b9, _, _ := unpackUint8(data, 9)
	s.SensorEntityInstance = EntityInstance(b9 & 0x7f)
	s.SensorEntityIsLogical = isBit7Set(b9)

	sensorType, _, _ := unpackUint8(data, 10)
	s.SensorType = SensorType(sensorType)

	eventReadingType, _, _ := unpackUint8(data, 11)
	s.SensorEventReadingType = EventReadingType(eventReadingType)

	typeLength, _, _ := unpackUint8(data, 16)
	s.IDStringTypeLength = TypeLength(typeLength)

	idStrLen := int(s.IDStringTypeLength.Length())
	if len(data) < minSize+idStrLen {
		return ErrNotEnoughDataWith("sdr (event-only sensor)", len(data), minSize+idStrLen)
	}
	s.IDStringBytes, _, _ = unpackBytes(data, minSize, idStrLen)
	return nil
}

// 43.4 SDR Type 08h - Entity Association Record
type SDREntityAssociation struct {
	//
	// Record KEY
	//

	ContainerEntityID       uint8
	ContainerEntityInstance uint8

	// [7] - 0b = contained entities specified as list
	//       1b = contained entities specified as range
	ContainedEntitiesAsRange bool
	// [6] - Record Link
	//       0b = no linked Entity Association records
	//       1b = linked Entity Association records exist
	LinkedEntityAssociationExist bool
	// [5] - 0b = Container entity and contained entities can be assumed absent
	//            if presence sensor for container entity cannot be accessed.
	//            This value is also used if the entity does not have a presence sensor.
	//       1b = Presence sensor should always be accessible. Software should consider
	//            it an error if the presence sensor associated with the container entity
	//            is not accessible. If a presence sensor is accessible, then the
	//            presence sensor can still report that the container entity is absent.
	PresenceSensorAlwaysAccessible bool

	ContainedEntity1ID       uint8
	ContainedEntity1Instance uint8

	//
	// RECORD BODY
	//

	ContainedEntity2ID       uint8
	ContainedEntity2Instance uint8
	ContainedEntity3ID       uint8
	ContainedEntity3Instance uint8
	ContainedEntity4ID       uint8
	ContainedEntity4Instance uint8
}

func parseSDREntityAssociation(data []byte, sdr *SDR) error {
	const SDREntityAssociationSize int = 16
	if len(data) < SDREntityAssociationSize {
		return ErrNotEnoughDataWith("sdr (entity association)", len(data), SDREntityAssociationSize)
	}

	s := &SDREntityAssociation{}
	sdr.EntityAssociation = s

	s.ContainerEntityID, _, _ = unpackUint8(data, 5)
	s.ContainerEntityInstance, _, _ = unpackUint8(data, 6)

	flag, _, _ := unpackUint8(data, 7)
	s.ContainedEntitiesAsRange = isBit7Set(flag)
	s.LinkedEntityAssociationExist = isBit6Set(flag)
	s.PresenceSensorAlwaysAccessible = isBit5Set(flag)

	s.ContainedEntity1ID, _, _ = unpackUint8(data, 8)
	s.ContainedEntity1Instance, _, _ = unpackUint8(data, 9)
	s.ContainedEntity2ID, _, _ = unpackUint8(data, 10)
	s.ContainedEntity2Instance, _, _ = unpackUint8(data, 11)
	s.ContainedEntity3ID, _, _ = unpackUint8(data, 12)
	s.ContainedEntity3Instance, _, _ = unpackUint8(data, 13)
	s.ContainedEntity4ID, _, _ = unpackUint8(data, 14)
	s.ContainedEntity4Instance, _, _ = unpackUint8(data, 15)

	return nil
}

// 43.5 SDR Type 09h - Device-relative Entity Association Record
type SDRDeviceRelative struct {
	//
	// Record KEY
	//

	ContainerEntityID            uint8
	ContainerEntityInstance      uint8
	ContainerEntityDeviceAddress uint8
	ContainerEntityDeviceChannel uint8

	// [7] - 0b = contained entities specified as list
	//       1b = contained entities specified as range
	ContainedEntitiesAsRange bool
	// [6] - Record Link
	//       0b = no linked Entity Association records
	//       1b = linked Entity Association records exist
	LinkedEntityAssociationExist bool
	// [5] - 0b = Container entity and contained entities can be assumed absent
	//            if presence sensor for container entity cannot be accessed.
	//            This value is also used if the entity does not have a presence sensor.
	//       1b = Presence sensor should always be accessible. Software should consider
	//            it an error if the presence sensor associated with the container entity
	//            is not accessible. If a presence sensor is accessible, then the
	//            presence sensor can still report that the container entity is absent.
	PresenceSensorAlwaysAccessible bool

	ContainedEntity1DeviceAddress uint8
	ContainedEntity1DeviceChannel uint8
	ContainedEntity1ID            uint8
	ContainedEntity1Instance      uint8

	//
	// RECORD BODY
	//

	ContainedEntity2DeviceAddress uint8
	ContainedEntity2DeviceChannel uint8
	ContainedEntity2ID            uint8
	ContainedEntity2Instance      uint8

	ContainedEntity3DeviceAddress uint8
	ContainedEntity3DeviceChannel uint8
	ContainedEntity3ID            uint8
	ContainedEntity3Instance      uint8

	ContainedEntity4DeviceAddress uint8
	ContainedEntity4DeviceChannel uint8
	ContainedEntity4ID            uint8
	ContainedEntity4Instance      uint8
}

func parseSDRDeviceRelativeEntityAssociation(data []byte, sdr *SDR) error {
	const SDRDeviceRelativeEntityAssociationSize = 32
	if len(data) < SDRDeviceRelativeEntityAssociationSize {
		return ErrNotEnoughDataWith("sdr (device-relative entity association)", len(data), SDRDeviceRelativeEntityAssociationSize)
	}

	s := &SDRDeviceRelative{}
	sdr.DeviceRelative = s

	s.ContainerEntityID, _, _ = unpackUint8(data, 5)
	s.ContainerEntityInstance, _, _ = unpackUint8(data, 6)
	s.ContainerEntityDeviceAddress, _, _ = unpackUint8(data, 7)
	s.ContainerEntityDeviceChannel, _, _ = unpackUint8(data, 8)

	flag, _, _ := unpackUint8(data, 9)
	s.ContainedEntitiesAsRange = isBit7Set(flag)
	s.LinkedEntityAssociationExist = isBit6Set(flag)
	s.PresenceSensorAlwaysAccessible = isBit5Set(flag)

	s.ContainedEntity1DeviceAddress, _, _ = unpackUint8(data, 10)
	s.ContainedEntity1DeviceChannel, _, _ = unpackUint8(data, 11)
	s.ContainedEntity1ID, _, _ = unpackUint8(data, 12)
	s.ContainedEntity1Instance, _, _ = unpackUint8(data, 13)

	s.ContainedEntity2DeviceAddress, _, _ = unpackUint8(data, 14)
	s.ContainedEntity2DeviceChannel, _, _ = unpackUint8(data, 15)
	s.ContainedEntity2ID, _, _ = unpackUint8(data, 16)
	s.ContainedEntity2Instance, _, _ = unpackUint8(data, 17)

	s.ContainedEntity3DeviceAddress, _, _ = unpackUint8(data, 18)
	s.ContainedEntity3DeviceChannel, _, _ = unpackUint8(data, 19)
	s.ContainedEntity3ID, _, _ = unpackUint8(data, 20)
	s.ContainedEntity3Instance, _, _ = unpackUint8(data, 21)

	s.ContainedEntity4DeviceAddress, _, _ = unpackUint8(data, 22)
	s.ContainedEntity4DeviceChannel, _, _ = unpackUint8(data, 23)
	s.ContainedEntity4ID, _, _ = unpackUint8(data, 24)
	s.ContainedEntity4Instance, _, _ = unpackUint8(data, 25)

	unpackBytes(data, 26, 6) // last 6 bytes reserved
	return nil
}

// 43.7 SDR Type 10h - Generic Device Locator Record
// This record is used to store the location and type information for devices
// on the IPMB or management controller private busses that are neither
// IPMI FRU devices nor IPMI management controllers.
//
// These devices can either be common non-intelligent I2C devices, special management ASICs, or proprietary controllers.
//
// IPMI FRU Devices and Management Controllers are located via the FRU Device Locator
// and Management Controller Device Locator records described in following sections.
type SDRGenericDeviceLocator struct {
	//
	// Record KEY
	//

	DeviceAccessAddress uint8 // Slave address of management controller used to access device. 0000000b if device is directly on IPMB
	DeviceSlaveAddress  uint8
	ChannelNumber       uint8 // Channel number for management controller used to access device
	AccessLUN           uint8 // LUN for Master Write-Read command. 00b if device is non-intelligent device directly on IPMB.
	PrivateBusID        uint8 // Private bus ID if bus = Private. 000b if device directly on IPMB

	//
	// RECORD BODY
	//

	AddressSpan        uint8
	DeviceType         uint8
	DeviceTypeModifier uint8
	EntityID           uint8
	EntityInstance     uint8

	DeviceIDTypeLength TypeLength
	DeviceIDString     []byte // Short ID string for the device
}

func parseSDRGenericLocator(data []byte, sdr *SDR) error {
	const SDRGenericLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
	minSize := SDRGenericLocatorMinSize

	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (generic-locator) min size", len(data), minSize)
	}

	s := &SDRGenericDeviceLocator{}
	sdr.GenericDeviceLocator = s

	s.DeviceAccessAddress, _, _ = unpackUint8(data, 5)

	b, _, _ := unpackUint8(data, 6)
	s.DeviceSlaveAddress = b

	c, _, _ := unpackUint8(data, 7)
	s.ChannelNumber = ((b & 0x01) << 4) | (c >> 5)
	s.AccessLUN = (c & 0x1f) >> 3
	s.PrivateBusID = (c & 0x07)

	s.AddressSpan, _, _ = unpackUint8(data, 8)
	s.DeviceType, _, _ = unpackUint8(data, 10)
	s.DeviceTypeModifier, _, _ = unpackUint8(data, 11)

	s.EntityID, _, _ = unpackUint8(data, 12)
	s.EntityInstance, _, _ = unpackUint8(data, 13)

	typeLength, _, _ := unpackUint8(data, 15)
	s.DeviceIDTypeLength = TypeLength(typeLength)

	idStrLen := int(s.DeviceIDTypeLength.Length())
	if len(data) < minSize+idStrLen {
		return ErrNotEnoughDataWith("sdr (generic-locator)", len(data), minSize+idStrLen)
	}
	s.DeviceIDString, _, _ = unpackBytes(data, minSize, idStrLen)
	return nil
}

// 43.8 SDR Type 11h - FRU Device Locator Record
// 38. Accessing FRU Devices
type SDRFRUDeviceLocator struct {
	//
	// Record KEY
	//

	// [7:1] - Slave address of controller used to access device. 0000000b if device is directly on IPMB.
	// This field indicates whether the device is on a private bus or not.
	DeviceAccessAddress uint8

	// FRU Device ID / Device Slave Address
	//
	// For Logical FRU DEVICE (accessed via FRU commands to mgmt. controller):
	// [7:0] - Number identifying FRU device within given IPM Controller. FFh = reserved.
	// The primary FRU device for a management controller is always device #0 at
	// LUN 00b. The primary FRU device is not reported via this FRU Device Locator
	// record - its presence is identified via the Device Capabilities field in the
	// Management Controller Device Locator record.
	//
	// For non-intelligent FRU device:
	// [7:1] - 7-bit I2C Slave Address
	// This is relative to the bus the device is on.
	// For devices on the IPMB, this is the slave address of the device on the IPMB.
	// For devices on a private bus, this is the slave address of the device on the private bus.
	// [0] - reserved
	FRUDeviceID_SlaveAddress uint8

	// [7] - logical/physical FRU device
	//   0b = device is not a logical FRU Device (a physical device, that is a non-intelligent device)
	//   1b = device is logical FRU Device (accessed via FRU commands to mgmt. controller)
	IsLogicalFRUDevice bool

	// [4:3] - LUN for Read/Write FRU Data Command or Master Write-Read command.
	AccessLUN uint8

	// [2:0] - Private bus ID if bus = Private.
	//   000b if device directly on IPMB, or device is a logical FRU Device.
	//
	// three bits, total eight bus ids, 000 ~ 111, (0 ~ 7)
	PrivateBusID uint8

	// [7:4] - Channel number for management controller used to access device.
	//   000b if device directly on the primary IPMB, or if controller is on the primary IPMB.
	//   Msbit for channel number is kept in next byte.
	//   (For IPMI v1.5. This byte position  was reserved for IPMI v1.0.)
	//
	// [3:0] - reserved
	ChannelNumber uint8

	//
	// RECORD BODY
	//

	DeviceType         DeviceType
	DeviceTypeModifier uint8

	FRUEntityID       uint8
	FRUEntityInstance uint8

	DeviceIDTypeLength TypeLength
	DeviceIDBytes      []byte // Short ID string for the FRU Device
}

// Table 38-1, FRU Device Locator Field Usage
func (sdrFRU *SDRFRUDeviceLocator) Location() FRULocation {
	if sdrFRU.IsLogicalFRUDevice {
		return FRULocation_MgmtController
	}

	if sdrFRU.DeviceAccessAddress == 0x00 {
		return FRULocation_IPMB
	}

	return FRULocation_PrivateBus
}

func parseSDRFRUDeviceLocator(data []byte, sdr *SDR) error {
	const SDRFRUDeviceLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
	minSize := SDRFRUDeviceLocatorMinSize
	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (fru device) min size", len(data), minSize)
	}

	s := &SDRFRUDeviceLocator{}
	sdr.FRUDeviceLocator = s

	b5, _, _ := unpackUint8(data, 5)
	s.DeviceAccessAddress = b5

	b7, _, _ := unpackUint8(data, 6)
	// Todo
	s.FRUDeviceID_SlaveAddress = b7

	b8, _, _ := unpackUint8(data, 7)
	s.IsLogicalFRUDevice = isBit7Set(b8)
	s.AccessLUN = (b8 & 0x1f) >> 3
	s.PrivateBusID = b8 & 0x07

	b9, _, _ := unpackUint8(data, 8)
	s.ChannelNumber = b9 >> 4

	deviceType, _, _ := unpackUint8(data, 10)
	s.DeviceType = DeviceType(deviceType)
	s.DeviceTypeModifier, _, _ = unpackUint8(data, 11)

	s.FRUEntityID, _, _ = unpackUint8(data, 12)
	s.FRUEntityInstance, _, _ = unpackUint8(data, 13)

	// index 14 Reserved for OEM use.

	typeLength, _, _ := unpackUint8(data, 15)
	s.DeviceIDTypeLength = TypeLength(typeLength)

	var idStrLen int
	if s.DeviceIDTypeLength.TypeCode() == 0x00 {
		// unspecified type
		idStrLen = len(data) - minSize
	} else {
		idStrLen = int(s.DeviceIDTypeLength.Length())
	}
	if len(data) < minSize+idStrLen {
		return ErrNotEnoughDataWith("sdr (fru device)", len(data), minSize+idStrLen)
	}

	s.DeviceIDBytes, _, _ = unpackBytes(data, minSize, idStrLen)
	return nil
}

// 43.9 SDR Type 12h - Management Controller Device Locator Record
type SDRMgmtControllerDeviceLocator struct {
	//
	// Record KEY
	//

	DeviceSlaveAddress uint8 // 7-bit I2C Slave Address[1] of device on channel
	ChannelNumber      uint8

	//
	// RECORD BODY
	//

	ACPISystemPowerStateNotificationRequired bool
	ACPIDevicePowerStateNotificationRequired bool
	ControllerLogsInitializationAgentErrors  bool
	LogInitializationAgentErrors             bool

	DeviceCap_ChassisDevice      bool // device functions as chassis device
	DeviceCap_Bridge             bool // Controller responds to Bridge NetFn command
	DeviceCap_IPMBEventGenerator bool // device generates event messages on IPMB
	DeviceCap_IPMBEventReceiver  bool // device accepts event messages from IPMB
	DeviceCap_FRUInventoryDevice bool // accepts FRU commands to FRU Device #0 at LUN 00b
	DeviceCap_SELDevice          bool // provides interface to SEL
	DeviceCap_SDRRepoDevice      bool // For BMC, indicates BMC provides interface to	1b = SDR Repository. For other controller, indicates controller accepts Device SDR commands
	DeviceCap_SensorDevice       bool // device accepts sensor commands

	EntityID       uint8
	EntityInstance uint8

	DeviceIDTypeLength TypeLength
	DeviceIDBytes      []byte
}

func parseSDRManagementControllerDeviceLocator(data []byte, sdr *SDR) error {
	const SDRManagementControllerDeviceLocatorMinSize = 16 // plus the ID String Bytes (optional 16 bytes maximum)
	minSize := SDRManagementControllerDeviceLocatorMinSize

	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (mgmt controller device locator) min size", len(data), minSize)
	}

	s := &SDRMgmtControllerDeviceLocator{}
	sdr.MgmtControllerDeviceLocator = s

	b6, _, _ := unpackUint8(data, 5)
	s.DeviceSlaveAddress = b6

	b7, _, _ := unpackUint8(data, 6)
	s.ChannelNumber = b7

	b8, _, _ := unpackUint8(data, 7)
	s.ACPISystemPowerStateNotificationRequired = isBit7Set(b8)
	s.ACPIDevicePowerStateNotificationRequired = isBit6Set(b8)
	s.ControllerLogsInitializationAgentErrors = isBit3Set(b8)
	s.LogInitializationAgentErrors = isBit2Set(b8)

	b9, _, _ := unpackUint8(data, 8)
	s.DeviceCap_ChassisDevice = isBit7Set(b9)
	s.DeviceCap_Bridge = isBit6Set(b9)
	s.DeviceCap_IPMBEventGenerator = isBit5Set(b9)
	s.DeviceCap_IPMBEventReceiver = isBit4Set(b9)
	s.DeviceCap_FRUInventoryDevice = isBit3Set(b9)
	s.DeviceCap_SELDevice = isBit2Set(b9)
	s.DeviceCap_SDRRepoDevice = isBit1Set(b9)
	s.DeviceCap_SensorDevice = isBit0Set(b9)

	s.EntityID, _, _ = unpackUint8(data, 12)
	s.EntityInstance, _, _ = unpackUint8(data, 13)

	typeLength, _, _ := unpackUint8(data, 15)
	s.DeviceIDTypeLength = TypeLength(typeLength)

	idStrLen := int(s.DeviceIDTypeLength.Length())
	if len(data) < minSize+idStrLen {
		return ErrNotEnoughDataWith("sdr (mgmt controller device locator)", len(data), minSize+idStrLen)
	}
	s.DeviceIDBytes, _, _ = unpackBytes(data, minSize, idStrLen)
	return nil
}

// 43.10 SDR Type 13h - Management Controller Confirmation Record
type SDRMgmtControllerConfirmation struct {
	//
	// Record KEY
	//

	DeviceSlaveAddress uint8 // 7-bit I2C Slave Address[1] of device on IPMB.
	DeviceID           uint8
	ChannelNumber      uint8
	DeviceRevision     uint8

	//
	// RECORD BODY
	//

	FirmwareMajorRevision uint8 // [6:0] - Major Firmware Revision, binary encoded.
	FirmwareMinorRevision uint8 // Minor Firmware Revision. BCD encoded.

	// IPMI Version from Get Device ID command. Holds IPMI Command Specification
	// Version. BCD encoded. 00h = reserved. Bits 7:4 hold the Least Significant digit of the
	// revision, while bits 3:0 hold the Most Significant bits. E.g. a value of 01h indicates
	// revision 1.0
	MajorIPMIVersion uint8
	MinorIPMIVersion uint8

	ManufacturerID uint32 // 3 bytes only
	ProductID      uint16
	DeviceGUID     []byte // 16 bytes
}

func parseSDRManagementControllerConfirmation(data []byte, sdr *SDR) error {
	const SDRManagementControllerConfirmationSize = 32
	minSize := SDRManagementControllerConfirmationSize
	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (mgmt controller confirmation) min size", len(data), minSize)
	}

	s := &SDRMgmtControllerConfirmation{}
	sdr.MgmtControllerConfirmation = s

	b6, _, _ := unpackUint8(data, 5)
	s.DeviceSlaveAddress = b6

	s.DeviceID, _, _ = unpackUint8(data, 6)

	b8, _, _ := unpackUint8(data, 7)
	s.ChannelNumber = b8 >> 4
	s.DeviceRevision = b8 & 0x0f

	b9, _, _ := unpackUint8(data, 8)
	s.FirmwareMajorRevision = b9 & 0x7f

	s.FirmwareMinorRevision, _, _ = unpackUint8(data, 9)

	ipmiVersionBCD, _, _ := unpackUint8(data, 10)
	s.MajorIPMIVersion = ipmiVersionBCD & 0x0f
	s.MinorIPMIVersion = ipmiVersionBCD >> 4

	s.ManufacturerID, _, _ = unpackUint24L(data, 11)
	s.ProductID, _, _ = unpackUint16L(data, 14)
	s.DeviceGUID, _, _ = unpackBytes(data, 16, 16)
	return nil
}

// 43.11 SDR Type 14h - BMC Message Channel Info Record
type SDRBMCChannelInfo struct {
	//
	// NO Record KEY
	//

	//
	// RECORD BODY
	//

	Channel0 ChannelInfo
	Channel1 ChannelInfo
	Channel2 ChannelInfo
	Channel3 ChannelInfo
	Channel4 ChannelInfo
	Channel5 ChannelInfo
	Channel6 ChannelInfo
	Channel7 ChannelInfo

	MessagingInterruptType uint8

	EventMessageBufferInterruptType uint8
}

type ChannelInfo struct {
	TransmitSupported bool // false means  receive message queue access only
	MessageReceiveLUN uint8
	ChannelProtocol   uint8
}

func parseChannelInfo(b uint8) ChannelInfo {
	return ChannelInfo{
		TransmitSupported: isBit7Set(b),
		MessageReceiveLUN: (b & 0x7f) >> 4,
		ChannelProtocol:   b & 0x0f,
	}
}

func parseSDRBMCMessageChannelInfo(data []byte, sdr *SDR) error {
	const SDRBMCMessageChannelInfoSize = 16
	minSize := SDRBMCMessageChannelInfoSize
	if len(data) < minSize {
		return ErrNotEnoughDataWith("sdr (bmc message channel info) min size", len(data), minSize)
	}

	s := &SDRBMCChannelInfo{}
	sdr.BMCChannelInfo = s

	s.Channel0 = parseChannelInfo(data[5])
	s.Channel1 = parseChannelInfo(data[6])
	s.Channel2 = parseChannelInfo(data[7])
	s.Channel3 = parseChannelInfo(data[8])
	s.Channel4 = parseChannelInfo(data[9])
	s.Channel5 = parseChannelInfo(data[10])
	s.Channel6 = parseChannelInfo(data[11])
	s.Channel7 = parseChannelInfo(data[12])

	s.MessagingInterruptType, _, _ = unpackUint8(data, 13)
	s.EventMessageBufferInterruptType, _, _ = unpackUint8(data, 14)
	return nil
}

// 43.12 SDR Type C0h - OEM Record
type SDROEM struct {
	//
	// NO Record KEY
	//

	//
	// RECORD BODY
	//

	ManufacturerID uint32 // 3 bytes only
	OEMData        []byte
}

func parseSDROEM(data []byte, sdr *SDR) error {
	const SDROEMMinSize = 8
	const SDROEMMaxSize = 64 // OEM defined records are limited to a maximum of 64 bytes, including the header

	if len(data) < SDROEMMinSize {
		return ErrNotEnoughDataWith("sdr (oem) min size", len(data), SDROEMMinSize)
	}

	s := &SDROEM{}
	sdr.OEM = s

	s.ManufacturerID, _, _ = unpackUint24L(data, 5)
	s.OEMData, _, _ = unpackBytesMost(data, 8, SDROEMMaxSize-8)
	return nil
}

// 43.6 SDR Type 0Ah:0Fh - Reserved Records
type SDRReserved struct {
}

// 43.15 Type/Length Byte Format
//
//	7:6 00 = Unicode
//	         00b define a Unicode string in the IPMI specification,
//	         whereas they specify a binary field in the Platform Management FRU specification.
//	    01 = BCD plus (see below)
//	    10 = 6-bit ASCII, packed
//	    11 = 8-bit ASCII + Latin 1.
//	        At least two bytes of data must be present when this type is used.
//	        Therefore, the length (number of data bytes) will be >1 if data is present,
//	        0 if data is not present. A length of 1 is reserved.
//	5 reserved.
//	    the bit 5 is reserved in the IPMI specification type/length byte,
//	    where it is part of the length field in the Platform Management FRU specification
//	4:0 length of following data, in characters.
//	    00000b indicates 'none following'.
//	    11111b = reserved.
type TypeLength uint8

func (tl TypeLength) String() string {
	return fmt.Sprintf("Byte: (%#02x) / Type: (%s) / Length: %d / Size: %d", uint8(tl), tl.Type(), tl.Length(), tl.Size())
}

func (tl TypeLength) Type() string {
	typecode := tl.TypeCode()

	var s string
	switch typecode {
	case 0:
		s = "Binary"
	case 1:
		s = "BCD plus"
	case 2:
		s = "6-bit ASCII"
	case 3:
		s = "8-bit ASCII"
	}

	return s
}

func (tl TypeLength) TypeCode() uint8 {
	return (uint8(tl) & 0xc0) >> 6 // the highest 2 bits
}

// Length returns the length of bytes occupied that packed the chars.
// But it is not the length of chars.
// For BCD plus type, one byte packs two chars.
func (tl TypeLength) Length() uint8 {
	return uint8(tl) & 0x3f // the lowest 6 bits
}

// Size returns the length of chars.
func (tl TypeLength) Size() uint8 {
	typecode := tl.TypeCode()
	l := tl.Length()

	var size uint8
	switch typecode {
	case 0: /* 00b: binary data */
		size = l
	case 1: /* 01b: BCD plus (binary-coded decimal) */
		// one byte packs two chars
		/* hex dump or BCD -> 2x length */
		size = l * 2
	case 2: /* 10b: 6-bit ASCII packed */
		// three bytes packs four chars
		/* 4 chars per group of 1-3 bytes, round up to 4 bytes boundary */
		size = (l/3 + 1) * 4
	case 3: /* 11b: 8-bit ASCII + Latin 1 */
		/* no length adjustment */
		size = l
	}

	return size
}

// Chars decodes the raw bytes to ASCII chars according to the encoding type code of TypeLength
func (tl TypeLength) Chars(raw []byte) (chars []byte, err error) {
	if len(raw) != int(tl.Length()) {
		err = fmt.Errorf("passed raw not equal to length")
		return
	}

	size := int(tl.Size())
	chars = make([]byte, size)

	switch tl.TypeCode() {
	case 0: // 00b - Binary
		for i := 0; i < size; i++ {
			chars[i] = raw[i]
		}

	case 1: // 01b - BCD Plus
		var bcdPlusChars = [16]byte{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', '-', '.', ':', ',', '_'}

		for i := 0; i < size; i++ {
			var charIndex uint8
			if i%2 == 0 {
				charIndex = raw[i/2] >> 0 & 0x0f
			} else {
				charIndex = raw[i/2] >> 4
			}
			chars[i] = bcdPlusChars[charIndex]
		}

	case 2: // 10b - 6-bit ASCII
		// 6-bit ASCII definition
		var ascii6bit = [64]byte{
			' ', '!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.', '/',
			'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?',
			'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
			'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\\', ']', '^', '_',
		}

		var leftover byte
		var s []byte

		for i := 0; i < len(raw); i++ {
			// every 3 bytes pack 4 chars, so we can calculate
			// character positions in a byte based on the remainder of division by 3.
			switch i % 3 {
			case 0:
				idx := raw[i] & 0x3f            // 6 right bits are an index of one char
				leftover = (raw[i] & 0xc0) >> 6 // 2 left bits are leftovers

				s = append(s, ascii6bit[idx])
			case 1:
				idx := leftover | (raw[i]&0x0f)<<2 // index of one char is 2-bit leftover as prefix plus 4 right bits
				leftover = (raw[i] & 0xf0) >> 4    // 4 left bits are leftovers

				s = append(s, ascii6bit[idx])
			case 2:
				idx := (raw[i]&0x03)<<4 | leftover // index of one char is 2 right bits plus 4-bit leftover as suffix
				leftover = 0                       // cleanup leftover calculation

				s = append(s, ascii6bit[idx])

				idx = (raw[i] & 0xfc) >> 2 // 6 left bits are an index of one char
				s = append(s, ascii6bit[idx])
			}
		}

		chars = s

	case 3: // 11b - 8-bit ASCII
		for i := 0; i < size; i++ {
			chars[i] = raw[i]
		}
	}

	return
}