1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Package deque contains a double-ended queue.
package deque
import (
"errors"
"github.com/bradenaw/juniper/iterator"
"github.com/bradenaw/juniper/xmath"
)
var errDequeEmpty = errors.New("pop from empty deque")
var errDequeModified = errors.New("deque modified during iteration")
const (
// A non-empty deque has space for at least this many items.
minSize = 16
// When growing a full deque, reallocate with len(d.a)*growFactor.
growFactor = 2
)
// Deque is a double-ended queue, allowing push and pop to both the front and back of the queue.
// Pushes and pops are amortized O(1). The zero-value is ready to use. Deque should not be copied
// after first use.
type Deque[T any] struct {
// Backing slice for the deque. Empty if the deque is empty.
a []T
// Index of the first item.
front int
// Index of the last item.
back int
gen int
}
// Len returns the number of items in the deque.
func (d *Deque[T]) Len() int {
if d.a == nil || d.back == -1 {
return 0
}
if d.front <= d.back {
return d.back - d.front + 1
}
return len(d.a) - d.front + d.back + 1
}
// Grow allocates sufficient space to add n more items without needing to reallocate.
func (d *Deque[T]) Grow(n int) {
extraCap := len(d.a) - d.Len()
if extraCap < n {
d.resize(len(d.a) + n)
}
}
// Shrink reallocates the backing buffer for d, if necessary, so that it fits only the current size
// plus at most n extra items.
func (d *Deque[T]) Shrink(n int) {
if n < 0 {
panic("Shrink() with a negative number of extras")
}
if len(d.a)-d.Len() > n {
d.resize(d.Len() + n)
}
}
// PushFront adds item to the front of the deque.
func (d *Deque[T]) PushFront(item T) {
if d.Len() == 0 {
d.a = make([]T, minSize)
d.a[0] = item
d.back = 0
return
}
d.maybeExpand()
d.front = positiveMod(d.front-1, len(d.a))
d.a[d.front] = item
d.gen++
}
// PushFront adds item to the back of the deque.
func (d *Deque[T]) PushBack(item T) {
if d.Len() == 0 {
d.a = make([]T, minSize)
d.a[0] = item
d.back = 0
return
}
d.maybeExpand()
d.back = (d.back + 1) % len(d.a)
d.a[d.back] = item
d.gen++
}
// Guarantees that there is room in the deque.
func (d *Deque[T]) maybeExpand() {
if d.Len() == len(d.a) {
d.resize(xmath.Max(minSize, len(d.a)*2))
}
}
func (d *Deque[T]) resize(n int) {
oldLen := d.Len()
newA := make([]T, n)
if !(d.a == nil || d.back == -1) {
if d.front <= d.back {
copy(newA, d.a[d.front:d.back+1])
} else {
copy(newA, d.a[d.front:])
copy(newA[len(d.a)-d.front:], d.a[:d.back+1])
}
}
d.a = newA
d.front = 0
d.back = oldLen - 1
}
// PopFront removes and returns the item at the front of the deque. It panics if the deque is empty.
func (d *Deque[T]) PopFront() T {
l := d.Len()
if l == 0 {
panic(errDequeEmpty)
}
item := d.a[d.front]
if l == 1 {
d.a = nil
d.front = 0
d.back = -1
return item
}
var zero T
d.a[d.front] = zero
d.front = (d.front + 1) % len(d.a)
d.gen++
return item
}
// PopBack removes and returns the item at the back of the deque. It panics if the deque is empty.
func (d *Deque[T]) PopBack() T {
l := d.Len()
if l == 0 {
panic(errDequeEmpty)
}
item := d.a[d.back]
if l == 1 {
d.a = nil
d.front = 0
d.back = -1
return item
}
var zero T
d.a[d.back] = zero
d.back = positiveMod(d.back-1, len(d.a))
d.gen++
return item
}
// Front returns the item at the front of the deque. It panics if the deque is empty.
func (d *Deque[T]) Front() T {
if d.back == -1 {
panic("deque index out of range")
}
return d.a[d.front]
}
// Back returns the item at the back of the deque. It panics if the deque is empty.
func (d *Deque[T]) Back() T {
return d.a[d.back]
}
// Item returns the ith item in the deque. 0 is the front and d.Len()-1 is the back.
func (d *Deque[T]) Item(i int) T {
if i < 0 || i >= d.Len() {
panic("deque index out of range")
}
idx := (d.front + i) % len(d.a)
return d.a[idx]
}
// Set sets the ith item in the deque. 0 is the front and d.Len()-1 is the back.
func (d *Deque[T]) Set(i int, t T) {
if i < 0 || i >= d.Len() {
panic("deque index out of range")
}
idx := (d.front + i) % len(d.a)
d.a[idx] = t
}
func positiveMod(l, d int) int {
x := l % d
if x < 0 {
return x + d
}
return x
}
type dequeIterator[T any] struct {
d *Deque[T]
i int
done bool
gen int
}
func (iter *dequeIterator[T]) Next() (T, bool) {
if iter.gen != iter.d.gen {
panic(errDequeModified)
}
var zero T
if iter.d.Len() == 0 {
return zero, false
}
if iter.done {
return zero, false
}
item := iter.d.a[iter.i]
if iter.i == iter.d.back {
iter.done = true
}
iter.i = (iter.i + 1) % len(iter.d.a)
return item, true
}
// Iterate iterates over the elements of the deque.
//
// The iterator panics if the deque has been modified since iteration started.
func (d *Deque[T]) Iterate() iterator.Iterator[T] {
return &dequeIterator[T]{
d: d,
i: d.front,
done: false,
gen: d.gen,
}
}
|