1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Package xheap contains extensions to the standard library package container/heap.
package xheap
import (
"github.com/bradenaw/juniper/internal/heap"
"github.com/bradenaw/juniper/iterator"
"github.com/bradenaw/juniper/xsort"
)
// Heap is a min-heap (https://en.wikipedia.org/wiki/Binary_heap). Min-heaps are a collection
// structure that provide constant-time access to the minimum element, and logarithmic-time removal.
// They are most commonly used as a priority queue.
//
// Push and Pop take amortized O(log(n)) time where n is the number of items in the heap.
//
// Len and Peek take O(1) time.
type Heap[T any] struct {
// Indirect here so that Heap behaves as a reference type, like the map builtin.
inner *heap.Heap[T]
}
// New returns a new Heap which uses less to determine the minimum element.
//
// The elements from initial are added to the heap. initial is modified by New and utilized by the
// Heap, so it should not be used after passing to New(). Passing initial is faster (O(n)) than
// creating an empty heap and pushing each item (O(n * log(n))).
func New[T any](less xsort.Less[T], initial []T) Heap[T] {
inner := heap.New(
func(a, b T) bool {
return less(a, b)
},
func(a T, i int) {},
initial,
)
return Heap[T]{
inner: &inner,
}
}
// Len returns the current number of elements in the heap.
func (h Heap[T]) Len() int {
return h.inner.Len()
}
// Grow allocates sufficient space to add n more elements without needing to reallocate.
func (h Heap[T]) Grow(n int) {
h.inner.Grow(n)
}
// Shrink reallocates the backing buffer for h, if necessary, so that it fits only the current size
// plus at most n extra items.
func (h Heap[T]) Shrink(n int) {
h.inner.Shrink(n)
}
// Push adds item to the heap.
func (h Heap[T]) Push(item T) {
h.inner.Push(item)
}
// Pop removes and returns the minimum item in the heap. It panics if h.Len()==0.
func (h Heap[T]) Pop() T {
return h.inner.Pop()
}
// Peek returns the minimum item in the heap. It panics if h.Len()==0.
func (h Heap[T]) Peek() T {
return h.inner.Peek()
}
// Iterate iterates over the elements of the heap.
//
// The iterator panics if the heap has been modified since iteration started.
func (h Heap[T]) Iterate() iterator.Iterator[T] {
return h.inner.Iterate()
}
// KP holds key and priority for PriorityQueue.
type KP[K any, P any] struct {
K K
P P
}
// PriorityQueue is a queue that yields items in increasing order of priority.
type PriorityQueue[K comparable, P any] struct {
// Indirect here so that Heap behaves as a reference type, like the map builtin.
inner *heap.Heap[KP[K, P]]
m map[K]int
}
// NewPriorityQueue returns a new PriorityQueue which uses less to determine the minimum element.
//
// The elements from initial are added to the priority queue. initial is modified by
// NewPriorityQueue and utilized by the PriorityQueue, so it should not be used after passing to
// NewPriorityQueue. Passing initial is faster (O(n)) than creating an empty priority queue and
// pushing each item (O(n * log(n))).
//
// Pop, Remove, and Update all take amortized O(log(n)) time where n is the number of items in the
// queue.
//
// Len, Peek, Contains, and Priority take O(1) time.
func NewPriorityQueue[K comparable, P any](
less xsort.Less[P],
initial []KP[K, P],
) PriorityQueue[K, P] {
h := PriorityQueue[K, P]{
m: make(map[K]int),
}
filtered := initial[:0]
for _, kp := range initial {
_, ok := h.m[kp.K]
if ok {
continue
}
h.m[kp.K] = -1
filtered = append(filtered, kp)
}
initial = filtered
inner := heap.New(
func(a, b KP[K, P]) bool {
return less(a.P, b.P)
},
func(x KP[K, P], i int) {
h.m[x.K] = i
},
initial,
)
h.inner = &inner
return h
}
// Len returns the current number of elements in the priority queue.
func (h PriorityQueue[K, P]) Len() int {
return h.inner.Len()
}
// Grow allocates sufficient space to add n more elements without needing to reallocate.
func (h PriorityQueue[K, P]) Grow(n int) {
h.inner.Grow(n)
}
// Update updates the priority of k to p, or adds it to the priority queue if not present.
func (h PriorityQueue[K, P]) Update(k K, p P) {
idx, ok := h.m[k]
if ok {
h.inner.UpdateAt(idx, KP[K, P]{k, p})
} else {
h.inner.Push(KP[K, P]{k, p})
}
}
// Pop removes and returns the lowest-P item in the priority queue. It panics if h.Len()==0.
func (h PriorityQueue[K, P]) Pop() K {
item := h.inner.Pop()
delete(h.m, item.K)
return item.K
}
// Peek returns the key of the lowest-P item in the priority queue. It panics if h.Len()==0.
func (h PriorityQueue[K, P]) Peek() K {
return h.inner.Peek().K
}
// Contains returns true if the given key is present in the priority queue.
func (h PriorityQueue[K, P]) Contains(k K) bool {
_, ok := h.m[k]
return ok
}
// Priority returns the priority of k, or the zero value of P if k is not present.
func (h PriorityQueue[K, P]) Priority(k K) P {
idx, ok := h.m[k]
if ok {
return h.inner.Item(idx).P
}
var zero P
return zero
}
// Remove removes the item with the given key if present.
func (h PriorityQueue[K, P]) Remove(k K) {
i, ok := h.m[k]
if !ok {
return
}
h.inner.RemoveAt(i)
delete(h.m, k)
}
// Iterate iterates over the elements of the priority queue.
//
// The iterator panics if the priority queue has been modified since iteration started.
func (h PriorityQueue[K, P]) Iterate() iterator.Iterator[K] {
return iterator.Map(h.inner.Iterate(), func(kp KP[K, P]) K { return kp.K })
}
|