1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
package xrand
import (
"context"
"encoding/binary"
"math"
"math/rand"
"testing"
"github.com/bradenaw/juniper/internal/require2"
"github.com/bradenaw/juniper/iterator"
"github.com/bradenaw/juniper/stream"
)
type fuzzRand struct {
t *testing.T
b []byte
}
func (r *fuzzRand) Intn(n int) int {
if len(r.b) < 4 {
return 0
}
x := binary.BigEndian.Uint32(r.b[:4])
r.b = r.b[4:]
return int(x) % n
}
func (r *fuzzRand) Float64() float64 {
if len(r.b) < 8 {
return 0
}
x := binary.BigEndian.Uint64(r.b[:8])
r.b = r.b[8:]
out := float64(x) / math.MaxUint64
if out == 1 {
out = math.Nextafter(out, 0)
}
require2.GreaterOrEqual(r.t, out, float64(0))
require2.Less(r.t, out, float64(1))
r.t.Logf("%f", out)
return out
}
func (r *fuzzRand) Shuffle(int, func(int, int)) {
panic("unimplemented")
}
func FuzzSampleInner(f *testing.F) {
f.Fuzz(func(t *testing.T, b []byte, k int) {
if k <= 0 {
return
}
t.Logf("k %d", k)
r := &fuzzRand{t, b}
samp := newSampler(r, k)
prev := 0
for i := 0; i < 100; i++ {
next, replace := samp.Next()
t.Logf("%d: next %d replace %d", i, next, replace)
if next == math.MaxInt {
break
}
if i < k {
require2.Equal(t, next, i)
require2.Equal(t, replace, i)
} else {
require2.Greater(t, next, prev)
require2.GreaterOrEqual(t, replace, 0)
require2.Less(t, replace, k)
}
prev = next
}
})
}
func stddev(a []int) float64 {
m := mean(a)
sumSquaredDeviation := float64(0)
for i := range a {
deviation := m - float64(a[i])
sumSquaredDeviation += (deviation * deviation)
}
return math.Sqrt(sumSquaredDeviation / float64(len(a)))
}
func mean(a []int) float64 {
sum := 0
for i := range a {
sum += a[i]
}
return float64(sum) / float64(len(a))
}
// f must return the same as Sample(r, 20, 5).
func testSample(t *testing.T, f func(r *rand.Rand) []int) {
r := rand.New(rand.NewSource(0))
counts := make([]int, 20)
for i := 0; i < 10000; i++ {
sample := f(r)
for _, item := range sample {
counts[item]++
}
}
m := mean(counts)
t.Logf("counts %#v", counts)
t.Logf("stddev %#v", stddev(counts))
t.Logf("stddev / mean %#v", stddev(counts)/m)
// There's certainly a better statistical test than this, but I haven't bothered to break out
// the stats book yet.
require2.InDelta(t, 0.02, stddev(counts)/m, 0.01)
}
func TestSample(t *testing.T) {
testSample(t, func(r *rand.Rand) []int {
return RSample(r, 20, 5)
})
}
func TestSampleSlice(t *testing.T) {
a := iterator.Collect(iterator.Counter(20))
testSample(t, func(r *rand.Rand) []int {
return RSampleSlice(r, a, 5)
})
}
func TestSampleIterator(t *testing.T) {
testSample(t, func(r *rand.Rand) []int {
return RSampleIterator(r, iterator.Counter(20), 5)
})
}
func TestSampleStream(t *testing.T) {
testSample(t, func(r *rand.Rand) []int {
out, err := RSampleStream(
context.Background(),
r,
stream.FromIterator(iterator.Counter(20)),
5,
)
require2.NoError(t, err)
return out
})
}
|