1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
// Package xsync contains extensions to the standard library package sync.
package xsync
import (
"context"
"math/rand"
"sync"
"time"
)
// ContextCond is equivalent to sync.Cond, except its Wait function accepts a context.Context.
//
// ContextConds should not be copied after first use.
type ContextCond struct {
m sync.RWMutex
ch chan struct{}
L sync.Locker
}
// NewContextCond returns a new ContextCond with l as its Locker.
func NewContextCond(l sync.Locker) *ContextCond {
return &ContextCond{
L: l,
// The 1-buffering here does mean that the cond will 'remember' signals in poor fashion,
// because it means a misused Signal/Wait may still work.
//
// However, it's necessary because otherwise there is a race in Wait() - without the
// buffering here, we could see a Signal() attempt to deliver to the channel after Wait has
// reached c.L.Unlock() but before reaching the select, which will then lead to a missed
// wakeup.
ch: make(chan struct{}, 1),
}
}
// Broadcast wakes all goroutines blocked in Wait(), if there are any.
//
// It is allowed but not required for the caller to hold c.L during the call.
func (c *ContextCond) Broadcast() {
c.m.Lock()
close(c.ch)
c.ch = make(chan struct{}, 1)
c.m.Unlock()
}
// Signal wakes one goroutine blocked in Wait(), if there is any. No guarantee is made as to which
// goroutine will wake.
//
// It is allowed but not required for the caller to hold c.L during the call.
func (c *ContextCond) Signal() {
c.m.RLock()
select {
case c.ch <- struct{}{}:
default:
}
c.m.RUnlock()
}
// Wait is equivalent to sync.Cond.Wait, except it accepts a context.Context. If the context expires
// before this goroutine is woken by Broadcast or Signal, it returns ctx.Err() immediately. If an
// error is returned, does not reaquire c.L before returning.
func (c *ContextCond) Wait(ctx context.Context) error {
c.m.RLock()
ch := c.ch
c.m.RUnlock()
c.L.Unlock()
select {
case <-ctx.Done():
return ctx.Err()
case <-ch:
c.L.Lock()
}
return nil
}
// Group manages a group of goroutines.
type Group struct {
ctx context.Context
cancel context.CancelFunc
// held in R when spawning to check if ctx is already cancelled and in W when cancelling ctx to
// make sure we never cause wg to go 0->1 while inside Wait()
m sync.RWMutex
wg sync.WaitGroup
}
// NewGroup returns a Group ready for use. The context passed to any of the f functions will be a
// descendant of ctx.
func NewGroup(ctx context.Context) *Group {
bgCtx, cancel := context.WithCancel(ctx)
return &Group{
ctx: bgCtx,
cancel: cancel,
}
}
// helper even though it's exactly g.Do so that the goroutine stack for a spawned function doesn't
// confusingly show all of them as created by Do.
func (g *Group) spawn(f func()) {
g.m.RLock()
if g.ctx.Err() != nil {
g.m.RUnlock()
return
}
g.wg.Add(1)
g.m.RUnlock()
go func() {
f()
g.wg.Done()
}()
}
// Do calls f once from another goroutine.
func (g *Group) Do(f func(ctx context.Context)) {
g.spawn(func() { f(g.ctx) })
}
// returns a random duration in [d - jitter, d + jitter]
func jitterDuration(d time.Duration, jitter time.Duration) time.Duration {
return d + time.Duration(float64(jitter)*((rand.Float64()*2)-1))
}
// Periodic spawns a goroutine that calls f once per interval +/- jitter.
func (g *Group) Periodic(
interval time.Duration,
jitter time.Duration,
f func(ctx context.Context),
) {
g.spawn(func() {
t := time.NewTimer(jitterDuration(interval, jitter))
defer t.Stop()
for {
if g.ctx.Err() != nil {
return
}
select {
case <-g.ctx.Done():
return
case <-t.C:
}
t.Reset(jitterDuration(interval, jitter))
f(g.ctx)
}
})
}
// Trigger spawns a goroutine which calls f whenever the returned function is called. If f is
// already running when triggered, f will run again immediately when it finishes.
func (g *Group) Trigger(f func(ctx context.Context)) func() {
c := make(chan struct{}, 1)
g.spawn(func() {
for {
if g.ctx.Err() != nil {
return
}
select {
case <-g.ctx.Done():
return
case <-c:
}
f(g.ctx)
}
})
return func() {
select {
case c <- struct{}{}:
default:
}
}
}
// PeriodicOrTrigger spawns a goroutine which calls f whenever the returned function is called. If
// f is already running when triggered, f will run again immediately when it finishes. Also calls f
// when it has been interval+/-jitter since the last trigger.
func (g *Group) PeriodicOrTrigger(
interval time.Duration,
jitter time.Duration,
f func(ctx context.Context),
) func() {
c := make(chan struct{}, 1)
g.spawn(func() {
t := time.NewTimer(jitterDuration(interval, jitter))
defer t.Stop()
for {
if g.ctx.Err() != nil {
return
}
select {
case <-g.ctx.Done():
return
case <-t.C:
t.Reset(jitterDuration(interval, jitter))
case <-c:
if !t.Stop() {
<-t.C
}
t.Reset(jitterDuration(interval, jitter))
}
f(g.ctx)
}
})
return func() {
select {
case c <- struct{}{}:
default:
}
}
}
// Stop cancels the context passed to spawned goroutines. After the group is stopped, no more
// goroutines will be spawned.
func (g *Group) Stop() {
g.m.Lock()
g.cancel()
g.m.Unlock()
}
// StopAndWait cancels the context passed to any of the spawned goroutines and waits for all spawned
// goroutines to exit. After the group is stopped, no more goroutines will be spawned.
func (g *Group) StopAndWait() {
g.Stop()
g.wg.Wait()
}
// Map is a typesafe wrapper over sync.Map.
type Map[K comparable, V any] struct {
m sync.Map
}
func (m *Map[K, V]) Delete(key K) {
m.m.Delete(key)
}
func (m *Map[K, V]) Load(key K) (value V, ok bool) {
value_, ok := m.m.Load(key)
if !ok {
var zero V
return zero, false
}
return value_.(V), ok
}
func (m *Map[K, V]) LoadAndDelete(key K) (value V, loaded bool) {
value_, ok := m.m.LoadAndDelete(key)
if !ok {
var zero V
return zero, false
}
return value_.(V), ok
}
func (m *Map[K, V]) LoadOrStore(key K, value V) (actual V, loaded bool) {
actual_, loaded := m.m.LoadOrStore(key, value)
return actual_.(V), loaded
}
func (m *Map[K, V]) Range(f func(key K, value V) bool) {
m.m.Range(func(key, value interface{}) bool {
return f(key.(K), value.(V))
})
}
func (m *Map[K, V]) Store(key K, value V) {
m.m.Store(key, value)
}
// Pool is a typesafe wrapper over sync.Pool.
type Pool[T any] struct {
p sync.Pool
}
func NewPool[T any](new_ func() T) Pool[T] {
return Pool[T]{
p: sync.Pool{
New: func() interface{} {
return new_()
},
},
}
}
func (p *Pool[T]) Get() T {
return p.p.Get().(T)
}
func (p *Pool[T]) Put(x T) {
p.p.Put(x)
}
// Future can be filled with a value exactly once. Many goroutines can concurrently wait for it to
// be filled. After filling, Wait() immediately returns the value it was filled with.
//
// Futures must be created by NewFuture and should not be copied after first use.
type Future[T any] struct {
c chan struct{}
x T
}
// NewFuture returns a ready-to-use Future.
func NewFuture[T any]() *Future[T] {
return &Future[T]{
c: make(chan struct{}),
}
}
// Fill fills f with value x. All active calls to Wait return x, and all future calls to Wait return
// x immediately.
//
// Panics if f has already been filled.
func (f *Future[T]) Fill(x T) {
f.x = x
close(f.c)
}
// Wait waits for f to be filled with a value and returns it. Returns immediately if f is already
// filled.
func (f *Future[T]) Wait() T {
<-f.c
return f.x
}
// Wait waits for f to be filled with a value and returns it, or returns ctx.Err() if ctx expires
// before this happens. Returns immediately if f is already filled.
func (f *Future[T]) WaitContext(ctx context.Context) (T, error) {
select {
case <-ctx.Done():
var zero T
return zero, ctx.Err()
case <-f.c:
}
return f.x, nil
}
|