1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"errors"
"io"
)
var (
// ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
// during decryption. This happens because of either invalid private key or
// corrupt ciphertext.
ErrInvalidMAC = errors.New("invalid mac hash")
// errInputTooShort occurs when the input ciphertext to the Decrypt
// function is less than 134 bytes long.
errInputTooShort = errors.New("ciphertext too short")
// errUnsupportedCurve occurs when the first two bytes of the encrypted
// text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
errUnsupportedCurve = errors.New("unsupported curve")
errInvalidXLength = errors.New("invalid X length, must be 32")
errInvalidYLength = errors.New("invalid Y length, must be 32")
errInvalidPadding = errors.New("invalid PKCS#7 padding")
// 0x02CA = 714
ciphCurveBytes = [2]byte{0x02, 0xCA}
// 0x20 = 32
ciphCoordLength = [2]byte{0x00, 0x20}
)
// GenerateSharedSecret generates a shared secret based on a private key and a
// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
// RFC5903 Section 9 states we should only return x.
func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
return x.Bytes()
}
// Encrypt encrypts data for the target public key using AES-256-CBC. It also
// generates a private key (the pubkey of which is also in the output). The only
// supported curve is secp256k1. The `structure' that it encodes everything into
// is:
//
// struct {
// // Initialization Vector used for AES-256-CBC
// IV [16]byte
// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
// // len_of_pubkeyY(2) + pubkeyY (curve = 714)
// PublicKey [70]byte
// // Cipher text
// Data []byte
// // HMAC-SHA-256 Message Authentication Code
// HMAC [32]byte
// }
//
// The primary aim is to ensure byte compatibility with Pyelliptic. Also, refer
// to section 5.8.1 of ANSI X9.63 for rationale on this format.
func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
ephemeral, err := NewPrivateKey(S256())
if err != nil {
return nil, err
}
ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
derivedKey := sha512.Sum512(ecdhKey)
keyE := derivedKey[:32]
keyM := derivedKey[32:]
paddedIn := addPKCSPadding(in)
// IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
iv := out[:aes.BlockSize]
if _, err = io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
// start writing public key
pb := ephemeral.PubKey().SerializeUncompressed()
offset := aes.BlockSize
// curve and X length
copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
offset += 4
// X
copy(out[offset:offset+32], pb[1:33])
offset += 32
// Y length
copy(out[offset:offset+2], ciphCoordLength[:])
offset += 2
// Y
copy(out[offset:offset+32], pb[33:])
offset += 32
// start encryption
block, err := aes.NewCipher(keyE)
if err != nil {
return nil, err
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
// start HMAC-SHA-256
hm := hmac.New(sha256.New, keyM)
hm.Write(out[:len(out)-sha256.Size]) // everything is hashed
copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
return out, nil
}
// Decrypt decrypts data that was encrypted using the Encrypt function.
func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
// IV + Curve params/X/Y + 1 block + HMAC-256
if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
return nil, errInputTooShort
}
// read iv
iv := in[:aes.BlockSize]
offset := aes.BlockSize
// start reading pubkey
if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
return nil, errUnsupportedCurve
}
offset += 2
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
return nil, errInvalidXLength
}
offset += 2
xBytes := in[offset : offset+32]
offset += 32
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
return nil, errInvalidYLength
}
offset += 2
yBytes := in[offset : offset+32]
offset += 32
pb := make([]byte, 65)
pb[0] = byte(0x04) // uncompressed
copy(pb[1:33], xBytes)
copy(pb[33:], yBytes)
// check if (X, Y) lies on the curve and create a Pubkey if it does
pubkey, err := ParsePubKey(pb, S256())
if err != nil {
return nil, err
}
// check for cipher text length
if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
return nil, errInvalidPadding // not padded to 16 bytes
}
// read hmac
messageMAC := in[len(in)-sha256.Size:]
// generate shared secret
ecdhKey := GenerateSharedSecret(priv, pubkey)
derivedKey := sha512.Sum512(ecdhKey)
keyE := derivedKey[:32]
keyM := derivedKey[32:]
// verify mac
hm := hmac.New(sha256.New, keyM)
hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
expectedMAC := hm.Sum(nil)
if !hmac.Equal(messageMAC, expectedMAC) {
return nil, ErrInvalidMAC
}
// start decryption
block, err := aes.NewCipher(keyE)
if err != nil {
return nil, err
}
mode := cipher.NewCBCDecrypter(block, iv)
// same length as ciphertext
plaintext := make([]byte, len(in)-offset-sha256.Size)
mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
return removePKCSPadding(plaintext)
}
// Implement PKCS#7 padding with block size of 16 (AES block size).
// addPKCSPadding adds padding to a block of data
func addPKCSPadding(src []byte) []byte {
padding := aes.BlockSize - len(src)%aes.BlockSize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(src, padtext...)
}
// removePKCSPadding removes padding from data that was added with addPKCSPadding
func removePKCSPadding(src []byte) ([]byte, error) {
length := len(src)
padLength := int(src[length-1])
if padLength > aes.BlockSize || length < aes.BlockSize {
return nil, errInvalidPadding
}
return src[:length-padLength], nil
}
|