1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
package edwards25519
import (
"fmt"
)
// Represents a point (s, t) on the Jacobi quartic associated to
// the Edwards curve
type JacobiPoint struct {
S, T FieldElement
}
// Computes the at most 8 positive FieldElements f such that p == elligator2(f).
// Assumes p is even.
//
// Returns a bitmask of which elements in fes are set.
func (p *ExtendedPoint) RistrettoElligator2Inverse(fes *[8]FieldElement) uint8 {
var setMask uint8
var jcs [4]JacobiPoint
var jc JacobiPoint
// Elligator2 computes a Point from a FieldElement in two steps: first
// it computes a (s,t) on the Jacobi quartic and then computes the
// corresponding even point on the Edwards curve.
//
// We invert in three steps. Any Ristretto point has four representatives
// as even Edwards points. For each of those even Edwards points,
// there are two points on the Jacobi quartic that map to it.
// Each of those eight points on the Jacobi quartic might have an
// Elligator2 preimage.
//
// Essentially we first loop over the four representatives of our point,
// then for each of them consider both points on the Jacobi quartic and
// check whether they have an inverse under Elligator2. We take the
// following shortcut though.
//
// We can compute two Jacobi quartic points for (x,y) and (-x,-y)
// at the same time. The four Jacobi quartic points are two of
// such pairs.
p.ToJacobiQuarticRistretto(&jcs)
for j := 0; j < 4; j++ {
setMask |= uint8(jcs[j].elligator2Inverse(&fes[2*j]) << uint(2*j))
jc.Dual(&jcs[j])
setMask |= uint8(jc.elligator2Inverse(&fes[2*j+1]) << uint(2*j+1))
}
return setMask
}
// Find a point on the Jacobi quartic associated to each of the four
// points Ristretto equivalent to p.
//
// There is one exception: for (0,-1) there is no point on the quartic and
// so we repeat one on the quartic equivalent to (0,1).
func (p *ExtendedPoint) ToJacobiQuarticRistretto(qs *[4]JacobiPoint) *ExtendedPoint {
var X2, Y2, Z2, Y4, ZmY, ZpY, Z2mY2, gamma, den, sOverX, spOverXp, tmp FieldElement
X2.Square(&p.X) // X^2
Y2.Square(&p.Y) // Y^2
Y4.Square(&Y2) // Y^4
Z2.Square(&p.Z) // Z^2
ZmY.sub(&p.Z, &p.Y) // Z - Y
ZpY.add(&p.Z, &p.Y) // Z + Y
Z2mY2.sub(&Z2, &Y2) // Z^2 - Y^2
// gamma := 1/sqrt( Y^4 X^2 (Z^2 - Y^2) )
gamma.Mul(&Y4, &X2)
gamma.Mul(&gamma, &Z2mY2)
gamma.InvSqrt(&gamma)
// den := gamma * Y^2
den.Mul(&gamma, &Y2)
// sOverX := den * (Z - Y)
// spOverXp := den * (Z + Y)
sOverX.Mul(&den, &ZmY)
spOverXp.Mul(&den, &ZpY)
// s_0 := sOverX * X
// s_1 := -spOverXp * X
qs[0].S.Mul(&sOverX, &p.X)
tmp.Mul(&spOverXp, &p.X)
qs[1].S.Neg(&tmp)
// t_0 := 2/sqrt(-d-1) * Z * sOverX
// t_1 := 2/sqrt(-d-1) * Z * spOverXp
tmp.Mul(&feDoubleInvSqrtMinusDMinusOne, &p.Z)
qs[0].T.Mul(&tmp, &sOverX)
qs[1].T.Mul(&tmp, &spOverXp)
// den = 1/sqrt(1+d) (Y^2 - Z^2) gamma
den.Neg(&Z2mY2)
den.Mul(&den, &feInvSqrt1pD)
den.Mul(&den, &gamma)
// Same as before, but with the substitution (X, Y, Z) = (Y, X, i*Z)
var iZ, iZmX, iZpX, sOverY, spOverYp FieldElement
iZ.Mul(&feI, &p.Z) // iZ
iZmX.sub(&iZ, &p.X) // iZ - X
iZpX.add(&iZ, &p.X) // iZ + X
// sOverY := den * (iZ - Y)
// spOverYp := den * (iZ + Y)
sOverY.Mul(&den, &iZmX)
spOverYp.Mul(&den, &iZpX)
// s_2 := sOverY * Y
// s_3 := -spOverYp * Y
qs[2].S.Mul(&sOverY, &p.Y)
tmp.Mul(&spOverYp, &p.Y)
qs[3].S.Neg(&tmp)
// t_2 := 2/sqrt(-d-1) * i*Z * sOverY
// t_3 := 2/sqrt(-d-1) * i*Z * spOverYp
tmp.Mul(&feDoubleInvSqrtMinusDMinusOne, &iZ)
qs[2].T.Mul(&tmp, &sOverY)
qs[3].T.Mul(&tmp, &spOverYp)
// Special case: X=0 or Y=0. Then return
//
// (0,1) (1,2i/sqrt(-d-1) (-1,2i/sqrt(-d-1))
//
// Note that if X=0 or Y=0, then s_i = t_i = 0.
XorYisZero := 1 - (p.X.IsNonZeroI() & p.Y.IsNonZeroI())
qs[0].T.ConditionalSet(&feOne, XorYisZero)
qs[1].T.ConditionalSet(&feOne, XorYisZero)
qs[2].T.ConditionalSet(&feDoubleIInvSqrtMinusDMinusOne, XorYisZero)
qs[3].T.ConditionalSet(&feDoubleIInvSqrtMinusDMinusOne, XorYisZero)
qs[2].S.ConditionalSet(&feOne, XorYisZero)
qs[3].S.ConditionalSet(&feMinusOne, XorYisZero)
return p
}
func (p *JacobiPoint) Dual(q *JacobiPoint) *JacobiPoint {
p.S.Neg(&q.S)
p.T.Neg(&q.T)
return p
}
// Elligator2 is defined in two steps: first a field element is converted
// to a point (s,t) on the Jacobi quartic associated to the Edwards curve.
// Then this point is mapped to a point on the Edwards curve.
// This function computes a field element that is mapped to a given (s,t)
// with Elligator2 if it exists.
//
// Returns 1 if a preimage is found and 0 if none exists.
func (p *JacobiPoint) elligator2Inverse(fe *FieldElement) int {
var x, y, a, a2, S2, S4, invSqiY, negS2, out FieldElement
// Special case: s = 0. If s is zero, either t = 1 or t = -1.
// If t=1, then sqrt(i*d) is the preimage. Otherwise it's 0.
sNonZero := p.S.IsNonZeroI()
tEqualsOne := p.T.EqualsI(&feOne)
out.Set(&feZero)
out.ConditionalSet(&feSqrtID, tEqualsOne)
ret := 1 - sNonZero
done := 1 - sNonZero
// a := (t+1) (d+1)/(d-1)
a.add(&p.T, &feOne)
a.Mul(&a, &feDp1OverDm1)
a2.Square(&a)
// y := 1/sqrt(i (s^4 - a^2)).
S2.Square(&p.S)
S4.Square(&S2)
invSqiY.sub(&S4, &a2)
// there is no preimage of the square root of i*(s^4-a^2) does not exist
sq := y.InvSqrtI(&invSqiY)
ret |= 1 - sq
done |= sq
// x := (a + sign(s)*s^2) y
negS2.Neg(&S2)
S2.ConditionalSet(&negS2, p.S.IsNegativeI())
x.add(&a, &S2)
x.Mul(&x, &y)
// fe := abs(x)
x.Abs(&x)
out.ConditionalSet(&x, 1-done)
fe.Set(&out)
return int(ret)
}
// Set p to the point corresponding to the given point (s,t) on the
// associated Jacobi quartic.
func (p *CompletedPoint) SetJacobiQuartic(jc *JacobiPoint) *CompletedPoint {
var s2 FieldElement
s2.Square(&jc.S)
// Set x to s * 2/sqrt(-d-1)
p.X.Mul(&jc.S, &feDoubleInvSqrtMinusDMinusOne)
// Set z to t
p.Z.Set(&jc.T)
// Set y to 1-s^2
p.Y.sub(&feOne, &s2)
// Set t to 1+s^2
p.T.add(&feOne, &s2)
return p
}
// Set p to the curvepoint corresponding to r0 via Mike Hamburg's variation
// on Elligator2 for Ristretto. Returns p.
func (p *CompletedPoint) SetRistrettoElligator2(r0 *FieldElement) *CompletedPoint {
var r, rPlusD, rPlusOne, D, N, ND, sqrt, twiddle, sgn FieldElement
var rSubOne, r0i, sNeg FieldElement
var jc JacobiPoint
var b int32
// r := i * r0^2
r0i.Mul(r0, &feI)
r.Mul(r0, &r0i)
// D := -((d*r)+1) * (r + d)
rPlusD.add(&feD, &r)
D.Mul(&feD, &r)
D.add(&D, &feOne)
D.Mul(&D, &rPlusD)
D.Neg(&D)
// N := -(d^2 - 1)(r + 1)
rPlusOne.add(&r, &feOne)
N.Mul(&feOneMinusDSquared, &rPlusOne)
// sqrt is the inverse square root of N*D or of i*N*D.
// b=1 iff n1 is square.
ND.Mul(&N, &D)
b = sqrt.InvSqrtI(&ND)
sqrt.Abs(&sqrt)
twiddle.SetOne()
twiddle.ConditionalSet(&r0i, 1-b)
sgn.SetOne()
sgn.ConditionalSet(&feMinusOne, 1-b)
sqrt.Mul(&sqrt, &twiddle)
// s = N * sqrt * twiddle
jc.S.Mul(&sqrt, &N)
// t = -sgn * sqrt * s * (r-1) * (d-1)^2 - 1
jc.T.Neg(&sgn)
jc.T.Mul(&sqrt, &jc.T)
jc.T.Mul(&jc.S, &jc.T)
jc.T.Mul(&feDMinusOneSquared, &jc.T)
rSubOne.sub(&r, &feOne)
jc.T.Mul(&rSubOne, &jc.T)
jc.T.sub(&jc.T, &feOne)
sNeg.Neg(&jc.S)
jc.S.ConditionalSet(&sNeg, equal30(jc.S.IsNegativeI(), b))
return p.SetJacobiQuartic(&jc)
}
// WARNING This operation is not constant-time. Do not use for cryptography
//
// unless you're sure this is not an issue.
func (p *JacobiPoint) String() string {
return fmt.Sprintf("JacobiPoint(%v, %v)", p.S, p.T)
}
|