File: elligator.go

package info (click to toggle)
golang-github-bwesterb-go-ristretto 1.2.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 628 kB
  • sloc: ansic: 1,915; asm: 278; makefile: 3
file content (273 lines) | stat: -rw-r--r-- 7,443 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
package edwards25519

import (
	"fmt"
)

// Represents a point (s, t) on the Jacobi quartic associated to
// the Edwards curve
type JacobiPoint struct {
	S, T FieldElement
}

// Computes the at most 8 positive FieldElements f such that p == elligator2(f).
// Assumes p is even.
//
// Returns a bitmask of which elements in fes are set.
func (p *ExtendedPoint) RistrettoElligator2Inverse(fes *[8]FieldElement) uint8 {
	var setMask uint8
	var jcs [4]JacobiPoint
	var jc JacobiPoint

	// Elligator2 computes a Point from a FieldElement in two steps: first
	// it computes a (s,t) on the Jacobi quartic and then computes the
	// corresponding even point on the Edwards curve.
	//
	// We invert in three steps.  Any Ristretto point has four representatives
	// as even Edwards points.  For each of those even Edwards points,
	// there are two points on the Jacobi quartic that map to it.
	// Each of those eight points on the Jacobi quartic might have an
	// Elligator2 preimage.
	//
	// Essentially we first loop over the four representatives of our point,
	// then for each of them consider both points on the Jacobi quartic and
	// check whether they have an inverse under Elligator2.  We take the
	// following shortcut though.
	//
	//  We can compute two Jacobi quartic points for (x,y) and (-x,-y)
	//  at the same time.  The four Jacobi quartic points are two of
	//  such pairs.

	p.ToJacobiQuarticRistretto(&jcs)

	for j := 0; j < 4; j++ {
		setMask |= uint8(jcs[j].elligator2Inverse(&fes[2*j]) << uint(2*j))
		jc.Dual(&jcs[j])
		setMask |= uint8(jc.elligator2Inverse(&fes[2*j+1]) << uint(2*j+1))
	}

	return setMask
}

// Find a point on the Jacobi quartic associated to each of the four
// points Ristretto equivalent to p.
//
// There is one exception: for (0,-1) there is no point on the quartic and
// so we repeat one on the quartic equivalent to (0,1).
func (p *ExtendedPoint) ToJacobiQuarticRistretto(qs *[4]JacobiPoint) *ExtendedPoint {
	var X2, Y2, Z2, Y4, ZmY, ZpY, Z2mY2, gamma, den, sOverX, spOverXp, tmp FieldElement

	X2.Square(&p.X)     // X^2
	Y2.Square(&p.Y)     // Y^2
	Y4.Square(&Y2)      // Y^4
	Z2.Square(&p.Z)     // Z^2
	ZmY.sub(&p.Z, &p.Y) // Z - Y
	ZpY.add(&p.Z, &p.Y) // Z + Y
	Z2mY2.sub(&Z2, &Y2) // Z^2 - Y^2

	// gamma := 1/sqrt( Y^4 X^2 (Z^2 - Y^2) )
	gamma.Mul(&Y4, &X2)
	gamma.Mul(&gamma, &Z2mY2)
	gamma.InvSqrt(&gamma)

	// den := gamma * Y^2
	den.Mul(&gamma, &Y2)

	// sOverX := den * (Z - Y)
	// spOverXp := den * (Z + Y)
	sOverX.Mul(&den, &ZmY)
	spOverXp.Mul(&den, &ZpY)

	// s_0 := sOverX * X
	// s_1 := -spOverXp * X
	qs[0].S.Mul(&sOverX, &p.X)
	tmp.Mul(&spOverXp, &p.X)
	qs[1].S.Neg(&tmp)

	// t_0 := 2/sqrt(-d-1) * Z * sOverX
	// t_1 := 2/sqrt(-d-1) * Z * spOverXp
	tmp.Mul(&feDoubleInvSqrtMinusDMinusOne, &p.Z)
	qs[0].T.Mul(&tmp, &sOverX)
	qs[1].T.Mul(&tmp, &spOverXp)

	// den = 1/sqrt(1+d) (Y^2 - Z^2) gamma
	den.Neg(&Z2mY2)
	den.Mul(&den, &feInvSqrt1pD)
	den.Mul(&den, &gamma)

	// Same as before, but with the substitution (X, Y, Z) = (Y, X, i*Z)
	var iZ, iZmX, iZpX, sOverY, spOverYp FieldElement
	iZ.Mul(&feI, &p.Z)  // iZ
	iZmX.sub(&iZ, &p.X) // iZ - X
	iZpX.add(&iZ, &p.X) // iZ + X

	// sOverY := den * (iZ - Y)
	// spOverYp := den * (iZ + Y)
	sOverY.Mul(&den, &iZmX)
	spOverYp.Mul(&den, &iZpX)

	// s_2 := sOverY * Y
	// s_3 := -spOverYp * Y
	qs[2].S.Mul(&sOverY, &p.Y)
	tmp.Mul(&spOverYp, &p.Y)
	qs[3].S.Neg(&tmp)

	// t_2 := 2/sqrt(-d-1) * i*Z * sOverY
	// t_3 := 2/sqrt(-d-1) * i*Z * spOverYp
	tmp.Mul(&feDoubleInvSqrtMinusDMinusOne, &iZ)
	qs[2].T.Mul(&tmp, &sOverY)
	qs[3].T.Mul(&tmp, &spOverYp)

	// Special case: X=0 or Y=0.  Then return
	//
	//  (0,1)   (1,2i/sqrt(-d-1)   (-1,2i/sqrt(-d-1))
	//
	// Note that if X=0 or Y=0, then s_i = t_i = 0.
	XorYisZero := 1 - (p.X.IsNonZeroI() & p.Y.IsNonZeroI())
	qs[0].T.ConditionalSet(&feOne, XorYisZero)
	qs[1].T.ConditionalSet(&feOne, XorYisZero)
	qs[2].T.ConditionalSet(&feDoubleIInvSqrtMinusDMinusOne, XorYisZero)
	qs[3].T.ConditionalSet(&feDoubleIInvSqrtMinusDMinusOne, XorYisZero)
	qs[2].S.ConditionalSet(&feOne, XorYisZero)
	qs[3].S.ConditionalSet(&feMinusOne, XorYisZero)

	return p
}

func (p *JacobiPoint) Dual(q *JacobiPoint) *JacobiPoint {
	p.S.Neg(&q.S)
	p.T.Neg(&q.T)

	return p
}

// Elligator2 is defined in two steps: first a field element is converted
// to a point (s,t) on the Jacobi quartic associated to the Edwards curve.
// Then this point is mapped to a point on the Edwards curve.
// This function computes a field element that is mapped to a given (s,t)
// with Elligator2 if it exists.
//
// Returns 1 if a preimage is found and 0 if none exists.
func (p *JacobiPoint) elligator2Inverse(fe *FieldElement) int {
	var x, y, a, a2, S2, S4, invSqiY, negS2, out FieldElement

	// Special case: s = 0.  If s is zero, either t = 1 or t = -1.
	// If t=1, then sqrt(i*d) is the preimage.  Otherwise it's 0.

	sNonZero := p.S.IsNonZeroI()
	tEqualsOne := p.T.EqualsI(&feOne)
	out.Set(&feZero)
	out.ConditionalSet(&feSqrtID, tEqualsOne)

	ret := 1 - sNonZero
	done := 1 - sNonZero

	// a := (t+1) (d+1)/(d-1)
	a.add(&p.T, &feOne)
	a.Mul(&a, &feDp1OverDm1)
	a2.Square(&a)

	// y := 1/sqrt(i (s^4 - a^2)).
	S2.Square(&p.S)
	S4.Square(&S2)
	invSqiY.sub(&S4, &a2)

	// there is no preimage of the square root of i*(s^4-a^2) does not exist
	sq := y.InvSqrtI(&invSqiY)
	ret |= 1 - sq
	done |= sq

	// x := (a + sign(s)*s^2) y
	negS2.Neg(&S2)
	S2.ConditionalSet(&negS2, p.S.IsNegativeI())
	x.add(&a, &S2)
	x.Mul(&x, &y)

	// fe := abs(x)
	x.Abs(&x)
	out.ConditionalSet(&x, 1-done)
	fe.Set(&out)

	return int(ret)
}

// Set p to the point corresponding to the given point (s,t) on the
// associated Jacobi quartic.
func (p *CompletedPoint) SetJacobiQuartic(jc *JacobiPoint) *CompletedPoint {
	var s2 FieldElement
	s2.Square(&jc.S)

	// Set x to s * 2/sqrt(-d-1)
	p.X.Mul(&jc.S, &feDoubleInvSqrtMinusDMinusOne)

	// Set z to t
	p.Z.Set(&jc.T)

	// Set y to 1-s^2
	p.Y.sub(&feOne, &s2)

	// Set t to 1+s^2
	p.T.add(&feOne, &s2)
	return p
}

// Set p to the curvepoint corresponding to r0 via Mike Hamburg's variation
// on Elligator2 for Ristretto.  Returns p.
func (p *CompletedPoint) SetRistrettoElligator2(r0 *FieldElement) *CompletedPoint {
	var r, rPlusD, rPlusOne, D, N, ND, sqrt, twiddle, sgn FieldElement
	var rSubOne, r0i, sNeg FieldElement
	var jc JacobiPoint

	var b int32

	// r := i * r0^2
	r0i.Mul(r0, &feI)
	r.Mul(r0, &r0i)

	// D := -((d*r)+1) * (r + d)
	rPlusD.add(&feD, &r)
	D.Mul(&feD, &r)
	D.add(&D, &feOne)
	D.Mul(&D, &rPlusD)
	D.Neg(&D)

	// N := -(d^2 - 1)(r + 1)
	rPlusOne.add(&r, &feOne)
	N.Mul(&feOneMinusDSquared, &rPlusOne)

	// sqrt is the inverse square root of N*D or of i*N*D.
	// b=1 iff n1 is square.
	ND.Mul(&N, &D)

	b = sqrt.InvSqrtI(&ND)
	sqrt.Abs(&sqrt)

	twiddle.SetOne()
	twiddle.ConditionalSet(&r0i, 1-b)
	sgn.SetOne()
	sgn.ConditionalSet(&feMinusOne, 1-b)
	sqrt.Mul(&sqrt, &twiddle)

	// s = N * sqrt * twiddle
	jc.S.Mul(&sqrt, &N)

	// t = -sgn * sqrt * s * (r-1) * (d-1)^2 - 1
	jc.T.Neg(&sgn)
	jc.T.Mul(&sqrt, &jc.T)
	jc.T.Mul(&jc.S, &jc.T)
	jc.T.Mul(&feDMinusOneSquared, &jc.T)
	rSubOne.sub(&r, &feOne)
	jc.T.Mul(&rSubOne, &jc.T)
	jc.T.sub(&jc.T, &feOne)

	sNeg.Neg(&jc.S)
	jc.S.ConditionalSet(&sNeg, equal30(jc.S.IsNegativeI(), b))
	return p.SetJacobiQuartic(&jc)
}

// WARNING This operation is not constant-time.  Do not use for cryptography
//
//	unless you're sure this is not an issue.
func (p *JacobiPoint) String() string {
	return fmt.Sprintf("JacobiPoint(%v, %v)", p.S, p.T)
}