1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
package edwards25519
type NielsPoint struct {
YPlusX, YMinusX, XY2D FieldElement
}
// Precomputed scalar multiplication table
type ScalarMultTable [32][8]NielsPoint
// Set p to zero, the neutral element. Return p.
func (p *NielsPoint) SetZero() *NielsPoint {
p.YMinusX.SetOne()
p.YPlusX.SetOne()
p.XY2D.SetZero()
return p
}
// Set p to q. Returns p.
func (p *NielsPoint) Set(q *NielsPoint) *NielsPoint {
p.YPlusX.Set(&q.YPlusX)
p.YMinusX.Set(&q.YMinusX)
p.XY2D.Set(&q.XY2D)
return p
}
// Set p to q if b == 1. Assumes b is 0 or 1. Returns p.
func (p *NielsPoint) ConditionalSet(q *NielsPoint, b int32) *NielsPoint {
p.YPlusX.ConditionalSet(&q.YPlusX, b)
p.YMinusX.ConditionalSet(&q.YMinusX, b)
p.XY2D.ConditionalSet(&q.XY2D, b)
return p
}
// Set p to -q. Returns p.
func (p *NielsPoint) Neg(q *NielsPoint) *NielsPoint {
p.YMinusX.Set(&q.YPlusX)
p.YPlusX.Set(&q.YMinusX)
p.XY2D.Neg(&q.XY2D)
return p
}
// Sets p to q+r. Returns p.
func (p *CompletedPoint) AddExtendedNiels(q *ExtendedPoint, r *NielsPoint) *CompletedPoint {
var t0 FieldElement
p.X.add(&q.Y, &q.X)
p.Y.sub(&q.Y, &q.X)
p.Z.Mul(&p.X, &r.YPlusX)
p.Y.Mul(&p.Y, &r.YMinusX)
p.T.Mul(&r.XY2D, &q.T)
t0.add(&q.Z, &q.Z)
p.X.sub(&p.Z, &p.Y)
p.Y.add(&p.Z, &p.Y)
p.Z.add(&t0, &p.T)
p.T.sub(&t0, &p.T)
return p
}
// Set p to q-r. Returns p.
func (p *CompletedPoint) SubExtendedNiels(q *ExtendedPoint, r *NielsPoint) *CompletedPoint {
var t0 FieldElement
p.X.add(&q.Y, &q.X)
p.Y.sub(&q.Y, &q.X)
p.Z.Mul(&p.X, &r.YMinusX)
p.Y.Mul(&p.Y, &r.YPlusX)
p.T.Mul(&r.XY2D, &q.T)
t0.add(&q.Z, &q.Z)
p.X.sub(&p.Z, &p.Y)
p.Y.add(&p.Z, &p.Y)
p.Z.sub(&t0, &p.T)
p.T.add(&t0, &p.T)
return p
}
// Sets p to q. Returns p.
func (p *NielsPoint) SetExtended(q *ExtendedPoint) *NielsPoint {
var x, y, zInv FieldElement
zInv.Inverse(&q.Z)
x.Mul(&q.X, &zInv)
y.Mul(&q.Y, &zInv)
p.YPlusX.Add(&y, &x)
p.YMinusX.Sub(&y, &x)
p.XY2D.Mul(&x, &y)
p.XY2D.Add(&p.XY2D, &p.XY2D)
p.XY2D.Mul(&p.XY2D, &feD)
return p
}
// Fill the table t with data for the point p.
func (t *ScalarMultTable) Compute(p *ExtendedPoint) {
var c, cp ExtendedPoint
var c_pp ProjectivePoint
var c_cp CompletedPoint
cp.Set(p)
for i := 0; i < 32; i++ {
c.SetZero()
for v := 0; v < 8; v++ {
c.Add(&c, &cp)
t[i][v].SetExtended(&c)
}
c_cp.DoubleExtended(&c)
c_pp.SetCompleted(&c_cp)
c_cp.DoubleProjective(&c_pp)
c_pp.SetCompleted(&c_cp)
c_cp.DoubleProjective(&c_pp)
c_pp.SetCompleted(&c_cp)
c_cp.DoubleProjective(&c_pp)
c_pp.SetCompleted(&c_cp)
c_cp.DoubleProjective(&c_pp)
cp.SetCompleted(&c_cp)
}
}
// Compute 4-bit signed window for the scalar s
func computeScalarWindow4(s *[32]byte, w *[64]int8) {
for i := 0; i < 32; i++ {
w[2*i] = int8(s[i] & 15)
w[2*i+1] = int8((s[i] >> 4) & 15)
}
carry := int8(0)
for i := 0; i < 63; i++ {
w[i] += carry
carry = (w[i] + 8) >> 4
w[i] -= carry << 4
}
w[63] += carry
}
// Set p to s * q, where t was computed for q using t.Compute(q).
func (t *ScalarMultTable) ScalarMult(p *ExtendedPoint, s *[32]byte) {
var w [64]int8
computeScalarWindow4(s, &w)
p.SetZero()
var np NielsPoint
var cp CompletedPoint
var pp ProjectivePoint
for i := int32(0); i < 32; i++ {
t.selectPoint(&np, i, int32(w[2*i+1]))
cp.AddExtendedNiels(p, &np)
p.SetCompleted(&cp)
}
cp.DoubleExtended(p)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
p.SetCompleted(&cp)
for i := int32(0); i < 32; i++ {
t.selectPoint(&np, i, int32(w[2*i]))
cp.AddExtendedNiels(p, &np)
p.SetCompleted(&cp)
}
}
func (t *ScalarMultTable) VarTimeScalarMult(p *ExtendedPoint, s *[32]byte) {
var w [64]int8
computeScalarWindow4(s, &w)
p.SetZero()
var np NielsPoint
var cp CompletedPoint
var pp ProjectivePoint
for i := int32(0); i < 32; i++ {
if t.varTimeSelectPoint(&np, i, int32(w[2*i+1])) {
cp.AddExtendedNiels(p, &np)
p.SetCompleted(&cp)
}
}
cp.DoubleExtended(p)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
pp.SetCompleted(&cp)
cp.DoubleProjective(&pp)
p.SetCompleted(&cp)
for i := int32(0); i < 32; i++ {
if t.varTimeSelectPoint(&np, i, int32(w[2*i])) {
cp.AddExtendedNiels(p, &np)
p.SetCompleted(&cp)
}
}
}
func (t *ScalarMultTable) selectPoint(p *NielsPoint, pos int32, b int32) {
bNegative := negative(b)
bAbs := b - (((-bNegative) & b) << 1)
p.SetZero()
for i := int32(0); i < 8; i++ {
p.ConditionalSet(&t[pos][i], equal30(bAbs, i+1))
}
var negP NielsPoint
negP.Neg(p)
p.ConditionalSet(&negP, bNegative)
}
func (t *ScalarMultTable) varTimeSelectPoint(p *NielsPoint, pos int32, b int32) bool {
if b == 0 {
return false
}
if b < 0 {
p.Neg(&t[pos][-b-1])
} else {
p.Set(&t[pos][b-1])
}
return true
}
|