1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
package ansi
import (
"unicode/utf8"
"github.com/charmbracelet/x/ansi/parser"
"github.com/mattn/go-runewidth"
"github.com/rivo/uniseg"
)
// State represents the state of the ANSI escape sequence parser used by
// [DecodeSequence].
type State = byte
// ANSI escape sequence states used by [DecodeSequence].
const (
NormalState State = iota
PrefixState
ParamsState
IntermedState
EscapeState
StringState
)
// DecodeSequence decodes the first ANSI escape sequence or a printable
// grapheme from the given data. It returns the sequence slice, the number of
// bytes read, the cell width for each sequence, and the new state.
//
// The cell width will always be 0 for control and escape sequences, 1 for
// ASCII printable characters, and the number of cells other Unicode characters
// occupy. It uses the uniseg package to calculate the width of Unicode
// graphemes and characters. This means it will always do grapheme clustering
// (mode 2027).
//
// Passing a non-nil [*Parser] as the last argument will allow the decoder to
// collect sequence parameters, data, and commands. The parser cmd will have
// the packed command value that contains intermediate and prefix characters.
// In the case of a OSC sequence, the cmd will be the OSC command number. Use
// [Cmd] and [Param] types to unpack command intermediates and prefixes as well
// as parameters.
//
// Zero [Cmd] means the CSI, DCS, or ESC sequence is invalid. Moreover, checking the
// validity of other data sequences, OSC, DCS, etc, will require checking for
// the returned sequence terminator bytes such as ST (ESC \\) and BEL).
//
// We store the command byte in [Cmd] in the most significant byte, the
// prefix byte in the next byte, and the intermediate byte in the least
// significant byte. This is done to avoid using a struct to store the command
// and its intermediates and prefixes. The command byte is always the least
// significant byte i.e. [Cmd & 0xff]. Use the [Cmd] type to unpack the
// command, intermediate, and prefix bytes. Note that we only collect the last
// prefix character and intermediate byte.
//
// The [p.Params] slice will contain the parameters of the sequence. Any
// sub-parameter will have the [parser.HasMoreFlag] set. Use the [Param] type
// to unpack the parameters.
//
// Example:
//
// var state byte // the initial state is always zero [NormalState]
// p := NewParser(32, 1024) // create a new parser with a 32 params buffer and 1024 data buffer (optional)
// input := []byte("\x1b[31mHello, World!\x1b[0m")
// for len(input) > 0 {
// seq, width, n, newState := DecodeSequence(input, state, p)
// log.Printf("seq: %q, width: %d", seq, width)
// state = newState
// input = input[n:]
// }
//
// This function treats the text as a sequence of grapheme clusters.
func DecodeSequence[T string | []byte](b T, state byte, p *Parser) (seq T, width int, n int, newState byte) {
return decodeSequence(GraphemeWidth, b, state, p)
}
// DecodeSequenceWc decodes the first ANSI escape sequence or a printable
// grapheme from the given data. It returns the sequence slice, the number of
// bytes read, the cell width for each sequence, and the new state.
//
// The cell width will always be 0 for control and escape sequences, 1 for
// ASCII printable characters, and the number of cells other Unicode characters
// occupy. It uses the uniseg package to calculate the width of Unicode
// graphemes and characters. This means it will always do grapheme clustering
// (mode 2027).
//
// Passing a non-nil [*Parser] as the last argument will allow the decoder to
// collect sequence parameters, data, and commands. The parser cmd will have
// the packed command value that contains intermediate and prefix characters.
// In the case of a OSC sequence, the cmd will be the OSC command number. Use
// [Cmd] and [Param] types to unpack command intermediates and prefixes as well
// as parameters.
//
// Zero [Cmd] means the CSI, DCS, or ESC sequence is invalid. Moreover, checking the
// validity of other data sequences, OSC, DCS, etc, will require checking for
// the returned sequence terminator bytes such as ST (ESC \\) and BEL).
//
// We store the command byte in [Cmd] in the most significant byte, the
// prefix byte in the next byte, and the intermediate byte in the least
// significant byte. This is done to avoid using a struct to store the command
// and its intermediates and prefixes. The command byte is always the least
// significant byte i.e. [Cmd & 0xff]. Use the [Cmd] type to unpack the
// command, intermediate, and prefix bytes. Note that we only collect the last
// prefix character and intermediate byte.
//
// The [p.Params] slice will contain the parameters of the sequence. Any
// sub-parameter will have the [parser.HasMoreFlag] set. Use the [Param] type
// to unpack the parameters.
//
// Example:
//
// var state byte // the initial state is always zero [NormalState]
// p := NewParser(32, 1024) // create a new parser with a 32 params buffer and 1024 data buffer (optional)
// input := []byte("\x1b[31mHello, World!\x1b[0m")
// for len(input) > 0 {
// seq, width, n, newState := DecodeSequenceWc(input, state, p)
// log.Printf("seq: %q, width: %d", seq, width)
// state = newState
// input = input[n:]
// }
//
// This function treats the text as a sequence of wide characters and runes.
func DecodeSequenceWc[T string | []byte](b T, state byte, p *Parser) (seq T, width int, n int, newState byte) {
return decodeSequence(WcWidth, b, state, p)
}
func decodeSequence[T string | []byte](m Method, b T, state State, p *Parser) (seq T, width int, n int, newState byte) {
for i := 0; i < len(b); i++ {
c := b[i]
switch state {
case NormalState:
switch c {
case ESC:
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.cmd = 0
p.paramsLen = 0
p.dataLen = 0
}
state = EscapeState
continue
case CSI, DCS:
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.cmd = 0
p.paramsLen = 0
p.dataLen = 0
}
state = PrefixState
continue
case OSC, APC, SOS, PM:
if p != nil {
p.cmd = parser.MissingCommand
p.dataLen = 0
}
state = StringState
continue
}
if p != nil {
p.dataLen = 0
p.paramsLen = 0
p.cmd = 0
}
if c > US && c < DEL {
// ASCII printable characters
return b[i : i+1], 1, 1, NormalState
}
if c <= US || c == DEL || c < 0xC0 {
// C0 & C1 control characters & DEL
return b[i : i+1], 0, 1, NormalState
}
if utf8.RuneStart(c) {
seq, _, width, _ = FirstGraphemeCluster(b, -1)
if m == WcWidth {
width = runewidth.StringWidth(string(seq))
}
i += len(seq)
return b[:i], width, i, NormalState
}
// Invalid UTF-8 sequence
return b[:i], 0, i, NormalState
case PrefixState:
if c >= '<' && c <= '?' {
if p != nil {
// We only collect the last prefix character.
p.cmd &^= 0xff << parser.PrefixShift
p.cmd |= int(c) << parser.PrefixShift
}
break
}
state = ParamsState
fallthrough
case ParamsState:
if c >= '0' && c <= '9' {
if p != nil {
if p.params[p.paramsLen] == parser.MissingParam {
p.params[p.paramsLen] = 0
}
p.params[p.paramsLen] *= 10
p.params[p.paramsLen] += int(c - '0')
}
break
}
if c == ':' {
if p != nil {
p.params[p.paramsLen] |= parser.HasMoreFlag
}
}
if c == ';' || c == ':' {
if p != nil {
p.paramsLen++
if p.paramsLen < len(p.params) {
p.params[p.paramsLen] = parser.MissingParam
}
}
break
}
state = IntermedState
fallthrough
case IntermedState:
if c >= ' ' && c <= '/' {
if p != nil {
p.cmd &^= 0xff << parser.IntermedShift
p.cmd |= int(c) << parser.IntermedShift
}
break
}
if p != nil {
// Increment the last parameter
if p.paramsLen > 0 && p.paramsLen < len(p.params)-1 ||
p.paramsLen == 0 && len(p.params) > 0 && p.params[0] != parser.MissingParam {
p.paramsLen++
}
}
if c >= '@' && c <= '~' {
if p != nil {
p.cmd &^= 0xff
p.cmd |= int(c)
}
if HasDcsPrefix(b) {
// Continue to collect DCS data
if p != nil {
p.dataLen = 0
}
state = StringState
continue
}
return b[:i+1], 0, i + 1, NormalState
}
// Invalid CSI/DCS sequence
return b[:i], 0, i, NormalState
case EscapeState:
switch c {
case '[', 'P':
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.paramsLen = 0
p.cmd = 0
}
state = PrefixState
continue
case ']', 'X', '^', '_':
if p != nil {
p.cmd = parser.MissingCommand
p.dataLen = 0
}
state = StringState
continue
}
if c >= ' ' && c <= '/' {
if p != nil {
p.cmd &^= 0xff << parser.IntermedShift
p.cmd |= int(c) << parser.IntermedShift
}
continue
} else if c >= '0' && c <= '~' {
if p != nil {
p.cmd &^= 0xff
p.cmd |= int(c)
}
return b[:i+1], 0, i + 1, NormalState
}
// Invalid escape sequence
return b[:i], 0, i, NormalState
case StringState:
switch c {
case BEL:
if HasOscPrefix(b) {
parseOscCmd(p)
return b[:i+1], 0, i + 1, NormalState
}
case CAN, SUB:
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
// Cancel the sequence
return b[:i], 0, i, NormalState
case ST:
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
return b[:i+1], 0, i + 1, NormalState
case ESC:
if HasStPrefix(b[i:]) {
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
// End of string 7-bit (ST)
return b[:i+2], 0, i + 2, NormalState
}
// Otherwise, cancel the sequence
return b[:i], 0, i, NormalState
}
if p != nil && p.dataLen < len(p.data) {
p.data[p.dataLen] = c
p.dataLen++
// Parse the OSC command number
if c == ';' && HasOscPrefix(b) {
parseOscCmd(p)
}
}
}
}
return b, 0, len(b), state
}
func parseOscCmd(p *Parser) {
if p == nil || p.cmd != parser.MissingCommand {
return
}
for j := range p.dataLen {
d := p.data[j]
if d < '0' || d > '9' {
break
}
if p.cmd == parser.MissingCommand {
p.cmd = 0
}
p.cmd *= 10
p.cmd += int(d - '0')
}
}
// Equal returns true if the given byte slices are equal.
func Equal[T string | []byte](a, b T) bool {
return string(a) == string(b)
}
// HasPrefix returns true if the given byte slice has prefix.
func HasPrefix[T string | []byte](b, prefix T) bool {
return len(b) >= len(prefix) && Equal(b[0:len(prefix)], prefix)
}
// HasSuffix returns true if the given byte slice has suffix.
func HasSuffix[T string | []byte](b, suffix T) bool {
return len(b) >= len(suffix) && Equal(b[len(b)-len(suffix):], suffix)
}
// HasCsiPrefix returns true if the given byte slice has a CSI prefix.
func HasCsiPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == CSI) ||
(len(b) > 1 && b[0] == ESC && b[1] == '[')
}
// HasOscPrefix returns true if the given byte slice has an OSC prefix.
func HasOscPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == OSC) ||
(len(b) > 1 && b[0] == ESC && b[1] == ']')
}
// HasApcPrefix returns true if the given byte slice has an APC prefix.
func HasApcPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == APC) ||
(len(b) > 1 && b[0] == ESC && b[1] == '_')
}
// HasDcsPrefix returns true if the given byte slice has a DCS prefix.
func HasDcsPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == DCS) ||
(len(b) > 1 && b[0] == ESC && b[1] == 'P')
}
// HasSosPrefix returns true if the given byte slice has a SOS prefix.
func HasSosPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == SOS) ||
(len(b) > 1 && b[0] == ESC && b[1] == 'X')
}
// HasPmPrefix returns true if the given byte slice has a PM prefix.
func HasPmPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == PM) ||
(len(b) > 1 && b[0] == ESC && b[1] == '^')
}
// HasStPrefix returns true if the given byte slice has a ST prefix.
func HasStPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == ST) ||
(len(b) > 1 && b[0] == ESC && b[1] == '\\')
}
// HasEscPrefix returns true if the given byte slice has an ESC prefix.
func HasEscPrefix[T string | []byte](b T) bool {
return len(b) > 0 && b[0] == ESC
}
// FirstGraphemeCluster returns the first grapheme cluster in the given string or byte slice.
// This is a syntactic sugar function that wraps
// uniseg.FirstGraphemeClusterInString and uniseg.FirstGraphemeCluster.
func FirstGraphemeCluster[T string | []byte](b T, state int) (T, T, int, int) {
switch b := any(b).(type) {
case string:
cluster, rest, width, newState := uniseg.FirstGraphemeClusterInString(b, state)
return T(cluster), T(rest), width, newState
case []byte:
cluster, rest, width, newState := uniseg.FirstGraphemeCluster(b, state)
return T(cluster), T(rest), width, newState
}
panic("unreachable")
}
// Cmd represents a sequence command. This is used to pack/unpack a sequence
// command with its intermediate and prefix characters. Those are commonly
// found in CSI and DCS sequences.
type Cmd int
// Prefix returns the unpacked prefix byte of the CSI sequence.
// This is always gonna be one of the following '<' '=' '>' '?' and in the
// range of 0x3C-0x3F.
// Zero is returned if the sequence does not have a prefix.
func (c Cmd) Prefix() byte {
return byte(parser.Prefix(int(c)))
}
// Intermediate returns the unpacked intermediate byte of the CSI sequence.
// An intermediate byte is in the range of 0x20-0x2F. This includes these
// characters from ' ', '!', '"', '#', '$', '%', '&', ”', '(', ')', '*', '+',
// ',', '-', '.', '/'.
// Zero is returned if the sequence does not have an intermediate byte.
func (c Cmd) Intermediate() byte {
return byte(parser.Intermediate(int(c)))
}
// Final returns the unpacked command byte of the CSI sequence.
func (c Cmd) Final() byte {
return byte(parser.Command(int(c)))
}
// Command packs a command with the given prefix, intermediate, and final. A
// zero byte means the sequence does not have a prefix or intermediate.
//
// Prefixes are in the range of 0x3C-0x3F that is one of `<=>?`.
//
// Intermediates are in the range of 0x20-0x2F that is anything in
// `!"#$%&'()*+,-./`.
//
// Final bytes are in the range of 0x40-0x7E that is anything in the range
// `@A–Z[\]^_`a–z{|}~`.
func Command(prefix, inter, final byte) (c int) {
c = int(final)
c |= int(prefix) << parser.PrefixShift
c |= int(inter) << parser.IntermedShift
return c
}
// Param represents a sequence parameter. Sequence parameters with
// sub-parameters are packed with the HasMoreFlag set. This is used to unpack
// the parameters from a CSI and DCS sequences.
type Param int
// Param returns the unpacked parameter at the given index.
// It returns the default value if the parameter is missing.
func (s Param) Param(def int) int {
p := int(s) & parser.ParamMask
if p == parser.MissingParam {
return def
}
return p
}
// HasMore unpacks the HasMoreFlag from the parameter.
func (s Param) HasMore() bool {
return s&parser.HasMoreFlag != 0
}
// Parameter packs an escape code parameter with the given parameter and
// whether this parameter has following sub-parameters.
func Parameter(p int, hasMore bool) (s int) {
s = p & parser.ParamMask
if hasMore {
s |= parser.HasMoreFlag
}
return s
}
|