File: palette_sort.go

package info (click to toggle)
golang-github-charmbracelet-x 0.0~git20251028.0cf22f8%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,940 kB
  • sloc: sh: 124; makefile: 5
file content (398 lines) | stat: -rw-r--r-- 10,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sixel

import (
	"math/bits"
)

const (
	unknownHint sortedHint = iota
	increasingHint
	decreasingHint
)

type ordered interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
		~float32 | ~float64 |
		~string
}

// Compare returns
//
//	-1 if x is less than y,
//	 0 if x equals y,
//	+1 if x is greater than y.
//
// For floating-point types, a NaN is considered less than any non-NaN,
// a NaN is considered equal to a NaN, and -0.0 is equal to 0.0.
func compare[T ordered](x, y T) int {
	xNaN := isNaN(x)
	yNaN := isNaN(y)
	if xNaN {
		if yNaN {
			return 0
		}
		return -1
	}
	if yNaN {
		return +1
	}
	if x < y {
		return -1
	}
	if x > y {
		return +1
	}
	return 0
}

// isNaN reports whether x is a NaN without requiring the math package.
// This will always return false if T is not floating-point.
func isNaN[T ordered](x T) bool {
	return x != x
}

func sortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
	n := len(x)
	pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp)
}

type sortedHint int // hint for pdqsort when choosing the pivot

// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64

func (r *xorshift) Next() uint64 {
	*r ^= *r << 13
	*r ^= *r >> 7
	*r ^= *r << 17
	return uint64(*r)
}

func nextPowerOfTwo(length int) uint {
	return 1 << bits.Len(uint(length)) //nolint:gosec
}

// insertionSortCmpFunc sorts data[a:b] using insertion sort.
func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
	for i := a + 1; i < b; i++ {
		for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- {
			data[j], data[j-1] = data[j-1], data[j]
		}
	}
}

// siftDownCmpFunc implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) {
	root := lo
	for {
		child := 2*root + 1
		if child >= hi {
			break
		}
		if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) {
			child++
		}
		if !(cmp(data[first+root], data[first+child]) < 0) { //nolint:staticcheck
			return
		}
		data[first+root], data[first+child] = data[first+child], data[first+root]
		root = child
	}
}

func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
	first := a
	lo := 0
	hi := b - a

	// Build heap with greatest element at top.
	for i := (hi - 1) / 2; i >= 0; i-- {
		siftDownCmpFunc(data, i, hi, first, cmp)
	}

	// Pop elements, largest first, into end of data.
	for i := hi - 1; i >= 0; i-- {
		data[first], data[first+i] = data[first+i], data[first]
		siftDownCmpFunc(data, lo, i, first, cmp)
	}
}

// pdqsortCmpFunc sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) {
	const maxInsertion = 12

	var (
		wasBalanced    = true // whether the last partitioning was reasonably balanced
		wasPartitioned = true // whether the slice was already partitioned
	)

	for {
		length := b - a

		if length <= maxInsertion {
			insertionSortCmpFunc(data, a, b, cmp)
			return
		}

		// Fall back to heapsort if too many bad choices were made.
		if limit == 0 {
			heapSortCmpFunc(data, a, b, cmp)
			return
		}

		// If the last partitioning was imbalanced, we need to breaking patterns.
		if !wasBalanced {
			breakPatternsCmpFunc(data, a, b)
			limit--
		}

		pivot, hint := choosePivotCmpFunc(data, a, b, cmp)
		if hint == decreasingHint {
			reverseRangeCmpFunc(data, a, b)
			// The chosen pivot was pivot-a elements after the start of the array.
			// After reversing it is pivot-a elements before the end of the array.
			// The idea came from Rust's implementation.
			pivot = (b - 1) - (pivot - a)
			hint = increasingHint
		}

		// The slice is likely already sorted.
		if wasBalanced && wasPartitioned && hint == increasingHint {
			if partialInsertionSortCmpFunc(data, a, b, cmp) {
				return
			}
		}

		// Probably the slice contains many duplicate elements, partition the slice into
		// elements equal to and elements greater than the pivot.
		if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) { //nolint:staticcheck
			mid := partitionEqualCmpFunc(data, a, b, pivot, cmp)
			a = mid
			continue
		}

		mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp)
		wasPartitioned = alreadyPartitioned

		leftLen, rightLen := mid-a, b-mid
		balanceThreshold := length / 8
		if leftLen < rightLen {
			wasBalanced = leftLen >= balanceThreshold
			pdqsortCmpFunc(data, a, mid, limit, cmp)
			a = mid + 1
		} else {
			wasBalanced = rightLen >= balanceThreshold
			pdqsortCmpFunc(data, mid+1, b, limit, cmp)
			b = mid
		}
	}
}

// partitionCmpFunc does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p.
func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) {
	data[a], data[pivot] = data[pivot], data[a]
	i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned

	for i <= j && (cmp(data[i], data[a]) < 0) {
		i++
	}
	for i <= j && !(cmp(data[j], data[a]) < 0) { //nolint:staticcheck
		j--
	}
	if i > j {
		data[j], data[a] = data[a], data[j]
		return j, true
	}
	data[i], data[j] = data[j], data[i]
	i++
	j--

	for {
		for i <= j && (cmp(data[i], data[a]) < 0) {
			i++
		}
		for i <= j && !(cmp(data[j], data[a]) < 0) { //nolint:staticcheck
			j--
		}
		if i > j {
			break
		}
		data[i], data[j] = data[j], data[i]
		i++
		j--
	}
	data[j], data[a] = data[a], data[j]
	return j, false
}

// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) {
	data[a], data[pivot] = data[pivot], data[a]
	i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned

	for {
		for i <= j && !(cmp(data[a], data[i]) < 0) { //nolint:staticcheck
			i++
		}
		for i <= j && (cmp(data[a], data[j]) < 0) {
			j--
		}
		if i > j {
			break
		}
		data[i], data[j] = data[j], data[i]
		i++
		j--
	}
	return i
}

// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool {
	const (
		maxSteps         = 5  // maximum number of adjacent out-of-order pairs that will get shifted
		shortestShifting = 50 // don't shift any elements on short arrays
	)
	i := a + 1
	for range maxSteps {
		for i < b && !(cmp(data[i], data[i-1]) < 0) { //nolint:staticcheck
			i++
		}

		if i == b {
			return true
		}

		if b-a < shortestShifting {
			return false
		}

		data[i], data[i-1] = data[i-1], data[i]

		// Shift the smaller one to the left.
		if i-a >= 2 {
			for j := i - 1; j >= 1; j-- {
				if !(cmp(data[j], data[j-1]) < 0) { //nolint:staticcheck
					break
				}
				data[j], data[j-1] = data[j-1], data[j]
			}
		}
		// Shift the greater one to the right.
		if b-i >= 2 {
			for j := i + 1; j < b; j++ {
				if !(cmp(data[j], data[j-1]) < 0) { //nolint:staticcheck
					break
				}
				data[j], data[j-1] = data[j-1], data[j]
			}
		}
	}
	return false
}

// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsCmpFunc[E any](data []E, a, b int) {
	length := b - a
	if length >= 8 {
		random := xorshift(length)
		modulus := nextPowerOfTwo(length)

		for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
			other := int(uint(random.Next()) & (modulus - 1)) //nolint:gosec
			if other >= length {
				other -= length
			}
			data[idx], data[a+other] = data[a+other], data[idx]
		}
	}
}

// choosePivotCmpFunc chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) {
	const (
		shortestNinther = 50
		maxSwaps        = 4 * 3
	)

	l := b - a

	var (
		swaps int
		i     = a + l/4*1
		j     = a + l/4*2
		k     = a + l/4*3
	)

	if l >= 8 {
		if l >= shortestNinther {
			// Tukey ninther method, the idea came from Rust's implementation.
			i = medianAdjacentCmpFunc(data, i, &swaps, cmp)
			j = medianAdjacentCmpFunc(data, j, &swaps, cmp)
			k = medianAdjacentCmpFunc(data, k, &swaps, cmp)
		}
		// Find the median among i, j, k and stores it into j.
		j = medianCmpFunc(data, i, j, k, &swaps, cmp)
	}

	switch swaps {
	case 0:
		return j, increasingHint
	case maxSwaps:
		return j, decreasingHint
	default:
		return j, unknownHint
	}
}

// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) {
	if cmp(data[b], data[a]) < 0 {
		*swaps++
		return b, a
	}
	return a, b
}

// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int {
	a, b = order2CmpFunc(data, a, b, swaps, cmp)
	b, _ = order2CmpFunc(data, b, c, swaps, cmp)
	_, b = order2CmpFunc(data, a, b, swaps, cmp)
	return b
}

// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int {
	return medianCmpFunc(data, a-1, a, a+1, swaps, cmp)
}

func reverseRangeCmpFunc[E any](data []E, a, b int) {
	i := a
	j := b - 1
	for i < j {
		data[i], data[j] = data[j], data[i]
		i++
		j--
	}
}