1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sixel
import (
"math/bits"
)
const (
unknownHint sortedHint = iota
increasingHint
decreasingHint
)
type ordered interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
~float32 | ~float64 |
~string
}
// Compare returns
//
// -1 if x is less than y,
// 0 if x equals y,
// +1 if x is greater than y.
//
// For floating-point types, a NaN is considered less than any non-NaN,
// a NaN is considered equal to a NaN, and -0.0 is equal to 0.0.
func compare[T ordered](x, y T) int {
xNaN := isNaN(x)
yNaN := isNaN(y)
if xNaN {
if yNaN {
return 0
}
return -1
}
if yNaN {
return +1
}
if x < y {
return -1
}
if x > y {
return +1
}
return 0
}
// isNaN reports whether x is a NaN without requiring the math package.
// This will always return false if T is not floating-point.
func isNaN[T ordered](x T) bool {
return x != x
}
func sortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
n := len(x)
pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp)
}
type sortedHint int // hint for pdqsort when choosing the pivot
// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64
func (r *xorshift) Next() uint64 {
*r ^= *r << 13
*r ^= *r >> 7
*r ^= *r << 17
return uint64(*r)
}
func nextPowerOfTwo(length int) uint {
return 1 << bits.Len(uint(length)) //nolint:gosec
}
// insertionSortCmpFunc sorts data[a:b] using insertion sort.
func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// siftDownCmpFunc implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) {
child++
}
if !(cmp(data[first+root], data[first+child]) < 0) { //nolint:staticcheck
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDownCmpFunc(data, i, hi, first, cmp)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDownCmpFunc(data, lo, i, first, cmp)
}
}
// pdqsortCmpFunc sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSortCmpFunc(data, a, b, cmp)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSortCmpFunc(data, a, b, cmp)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatternsCmpFunc(data, a, b)
limit--
}
pivot, hint := choosePivotCmpFunc(data, a, b, cmp)
if hint == decreasingHint {
reverseRangeCmpFunc(data, a, b)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSortCmpFunc(data, a, b, cmp) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) { //nolint:staticcheck
mid := partitionEqualCmpFunc(data, a, b, pivot, cmp)
a = mid
continue
}
mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsortCmpFunc(data, a, mid, limit, cmp)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsortCmpFunc(data, mid+1, b, limit, cmp)
b = mid
}
}
}
// partitionCmpFunc does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p.
func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
for i <= j && !(cmp(data[j], data[a]) < 0) { //nolint:staticcheck
j--
}
if i > j {
data[j], data[a] = data[a], data[j]
return j, true
}
data[i], data[j] = data[j], data[i]
i++
j--
for {
for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
for i <= j && !(cmp(data[j], data[a]) < 0) { //nolint:staticcheck
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
data[j], data[a] = data[a], data[j]
return j, false
}
// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !(cmp(data[a], data[i]) < 0) { //nolint:staticcheck
i++
}
for i <= j && (cmp(data[a], data[j]) < 0) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
return i
}
// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for range maxSteps {
for i < b && !(cmp(data[i], data[i-1]) < 0) { //nolint:staticcheck
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data[i], data[i-1] = data[i-1], data[i]
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !(cmp(data[j], data[j-1]) < 0) { //nolint:staticcheck
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !(cmp(data[j], data[j-1]) < 0) { //nolint:staticcheck
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
}
return false
}
// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsCmpFunc[E any](data []E, a, b int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1)) //nolint:gosec
if other >= length {
other -= length
}
data[idx], data[a+other] = data[a+other], data[idx]
}
}
}
// choosePivotCmpFunc chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacentCmpFunc(data, i, &swaps, cmp)
j = medianAdjacentCmpFunc(data, j, &swaps, cmp)
k = medianAdjacentCmpFunc(data, k, &swaps, cmp)
}
// Find the median among i, j, k and stores it into j.
j = medianCmpFunc(data, i, j, k, &swaps, cmp)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) {
if cmp(data[b], data[a]) < 0 {
*swaps++
return b, a
}
return a, b
}
// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int {
a, b = order2CmpFunc(data, a, b, swaps, cmp)
b, _ = order2CmpFunc(data, b, c, swaps, cmp)
_, b = order2CmpFunc(data, a, b, swaps, cmp)
return b
}
// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int {
return medianCmpFunc(data, a-1, a, a+1, swaps, cmp)
}
func reverseRangeCmpFunc[E any](data []E, a, b int) {
i := a
j := b - 1
for i < j {
data[i], data[j] = data[j], data[i]
i++
j--
}
}
|