1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//go:build !tinygo && !noasm
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#define Ln2Hi 6.9313812256e-01
#define Ln2Lo 9.0580006145e-06
#define Log2e 1.4426950216e+00
#define Overflow 7.097827e+02
#define Underflow -7.451332e+02
#define Overflow2 1.024000e+03
#define Underflow2 -1.0740e+03
#define NearZero 0x317fffff // 2**-28
#define PosInf 0x7f800000
#define FracMask 0x07fffff
#define C1 0x34000000 // 2**-23
#define P1 1.6666667163e-01 // 0x3FC55555; 0x55555555
#define P2 -2.7777778450e-03 // 0xBF66C16C; 0x16BEBD93
#define P3 6.6137559770e-05 // 0x3F11566A; 0xAF25DE2C
#define P4 -1.6533901999e-06 // 0xBEBBBD41; 0xC5D26BF1
#define P5 4.1381369442e-08 // 0x3E663769; 0x72BEA4D0
// Exp returns e**x, the base-e exponential of x.
// This is an assembly implementation of the method used for function Exp in file exp.go.
//
// func archExp(x float32) float32
TEXT ·archExp(SB),$0-12
FMOVS x+0(FP), F0 // F0 = x
FCMPS F0, F0
BNE isNaN // x = NaN, return NaN
FMOVS $Overflow, F1
FCMPS F1, F0
BGT overflow // x > Overflow, return PosInf
FMOVS $Underflow, F1
FCMPS F1, F0
BLT underflow // x < Underflow, return 0
MOVW $NearZero, R0
FMOVS R0, F2
FABSS F0, F3
FMOVS $1.0, F1 // F1 = 1.0
FCMPS F2, F3
BLT nearzero // fabs(x) < NearZero, return 1 + x
// argument reduction, x = k*ln2 + r, |r| <= 0.5*ln2
// computed as r = hi - lo for extra precision.
FMOVS $Log2e, F2
FMOVS $0.5, F3
FNMSUBS F0, F3, F2, F4 // Log2e*x - 0.5
FMADDS F0, F3, F2, F3 // Log2e*x + 0.5
FCMPS $0.0, F0
FCSELS LT, F4, F3, F3 // F3 = k
FCVTZSS F3, R1 // R1 = int(k)
SCVTFS R1, F3 // F3 = float32(int(k))
FMOVS $Ln2Hi, F4 // F4 = Ln2Hi
FMOVS $Ln2Lo, F5 // F5 = Ln2Lo
FMSUBS F3, F0, F4, F4 // F4 = hi = x - float32(int(k))*Ln2Hi
FMULS F3, F5 // F5 = lo = float32(int(k)) * Ln2Lo
FSUBS F5, F4, F6 // F6 = r = hi - lo
FMULS F6, F6, F7 // F7 = t = r * r
// compute y
FMOVS $P5, F8 // F8 = P5
FMOVS $P4, F9 // F9 = P4
FMADDS F7, F9, F8, F13 // P4+t*P5
FMOVS $P3, F10 // F10 = P3
FMADDS F7, F10, F13, F13 // P3+t*(P4+t*P5)
FMOVS $P2, F11 // F11 = P2
FMADDS F7, F11, F13, F13 // P2+t*(P3+t*(P4+t*P5))
FMOVS $P1, F12 // F12 = P1
FMADDS F7, F12, F13, F13 // P1+t*(P2+t*(P3+t*(P4+t*P5)))
FMSUBS F7, F6, F13, F13 // F13 = c = r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
FMOVS $2.0, F14
FSUBS F13, F14
FMULS F6, F13, F15
FDIVS F14, F15 // F15 = (r*c)/(2-c)
FSUBS F15, F5, F15 // lo-(r*c)/(2-c)
FSUBS F4, F15, F15 // (lo-(r*c)/(2-c))-hi
FSUBS F15, F1, F16 // F16 = y = 1-((lo-(r*c)/(2-c))-hi)
// inline Ldexp(y, k), benefit:
// 1, no parameter pass overhead.
// 2, skip unnecessary checks for Inf/NaN/Zero
FMOVS F16, R0
ANDS $FracMask, R0, R2 // fraction
LSRW $23, R0, R5 // exponent
ADDS R1, R5 // R1 = int(k)
CMPW $1, R5
BGE normal
ADDS $23, R5 // denormal
MOVW $C1, R8
FMOVS R8, F1 // m = 2**-23
normal:
ORRW R5<<23, R2, R0
FMOVS R0, F0
FMULS F1, F0 // return m * x
FMOVS F0, ret+8(FP)
RET
nearzero:
FADDS F1, F0
isNaN:
FMOVS F0, ret+8(FP)
RET
underflow:
MOVW ZR, ret+8(FP)
RET
overflow:
MOVW $PosInf, R0
MOVW R0, ret+8(FP)
RET
// Exp2 returns 2**x, the base-2 exponential of x.
// This is an assembly implementation of the method used for function Exp2 in file exp.go.
//
// func archExp2(x float32) float32
TEXT ·archExp2(SB),$0-12 // Is this correct?
FMOVS x+0(FP), F0 // F0 = x
FCMPS F0, F0
BNE isNaN // x = NaN, return NaN
FMOVS $Overflow2, F1
FCMPS F1, F0
BGT overflow // x > Overflow, return PosInf
FMOVS $Underflow2, F1
FCMPS F1, F0
BLT underflow // x < Underflow, return 0
// argument reduction; x = r*lg(e) + k with |r| <= ln(2)/2
// computed as r = hi - lo for extra precision.
FMOVS $0.5, F2
FSUBS F2, F0, F3 // x + 0.5
FADDS F2, F0, F4 // x - 0.5
FCMPS $0.0, F0
FCSELS LT, F3, F4, F3 // F3 = k
FCVTZSS F3, R1 // R1 = int(k)
SCVTFS R1, F3 // F3 = float32(int(k))
FSUBS F3, F0, F3 // t = x - float32(int(k))
FMOVS $Ln2Hi, F4 // F4 = Ln2Hi
FMOVS $Ln2Lo, F5 // F5 = Ln2Lo
FMULS F3, F4 // F4 = hi = t * Ln2Hi
FNMULS F3, F5 // F5 = lo = -t * Ln2Lo
FSUBS F5, F4, F6 // F6 = r = hi - lo
FMULS F6, F6, F7 // F7 = t = r * r
// compute y
FMOVS $P5, F8 // F8 = P5
FMOVS $P4, F9 // F9 = P4
FMADDS F7, F9, F8, F13 // P4+t*P5
FMOVS $P3, F10 // F10 = P3
FMADDS F7, F10, F13, F13 // P3+t*(P4+t*P5)
FMOVS $P2, F11 // F11 = P2
FMADDS F7, F11, F13, F13 // P2+t*(P3+t*(P4+t*P5))
FMOVS $P1, F12 // F12 = P1
FMADDS F7, F12, F13, F13 // P1+t*(P2+t*(P3+t*(P4+t*P5)))
FMSUBS F7, F6, F13, F13 // F13 = c = r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
FMOVS $2.0, F14
FSUBS F13, F14
FMULS F6, F13, F15
FDIVS F14, F15 // F15 = (r*c)/(2-c)
FMOVS $1.0, F1 // F1 = 1.0
FSUBS F15, F5, F15 // lo-(r*c)/(2-c)
FSUBS F4, F15, F15 // (lo-(r*c)/(2-c))-hi
FSUBS F15, F1, F16 // F16 = y = 1-((lo-(r*c)/(2-c))-hi)
// inline Ldexp(y, k), benefit:
// 1, no parameter pass overhead.
// 2, skip unnecessary checks for Inf/NaN/Zero
FMOVS F16, R0
ANDS $FracMask, R0, R2 // fraction
LSRW $23, R0, R5 // exponent
ADDS R1, R5 // R1 = int(k)
CMPW $1, R5
BGE normal
ADDS $23, R5 // denormal
MOVW $C1, R8
FMOVS R8, F1 // m = 2**-52
normal:
ORRW R5<<23, R2, R0
FMOVS R0, F0
FMULS F1, F0 // return m * x
isNaN:
FMOVS F0, ret+8(FP)
RET
underflow:
MOVW ZR, ret+8(FP)
RET
overflow:
MOVW $PosInf, R0
MOVW R0, ret+8(FP)
RET
|