1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
// Copyright (c) 2017, Christophe-Marie Duquesne <chmd@chmd.fr>
//
// This file was adapted from restic https://github.com/restic/chunker
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package rabinkarp64
import (
"sync"
"github.com/chmduquesne/rollinghash"
)
const Size = 8
type tables struct {
out [256]Pol
mod [256]Pol
}
// tables are cacheable for a given pol and windowsize
type index struct {
pol Pol
windowsize int
}
type RabinKarp64 struct {
pol Pol
tables *tables
polShift uint
value Pol
// window is treated like a circular buffer, where the oldest element
// is indicated by d.oldest
window []byte
oldest int
}
// cache precomputed tables, these are read-only anyway
var cache struct {
// For a given polynom and a given window size, we get a table
entries map[index]*tables
sync.Mutex
}
func init() {
cache.entries = make(map[index]*tables)
}
func (d *RabinKarp64) updateTables() {
windowsize := len(d.window)
pol := d.pol
idx := index{d.pol, windowsize}
cache.Lock()
t, ok := cache.entries[idx]
cache.Unlock()
if ok {
d.tables = t
return
}
d.tables = buildTables(pol, windowsize)
cache.Lock()
cache.entries[idx] = d.tables
cache.Unlock()
return
}
func buildTables(pol Pol, windowsize int) (t *tables) {
t = &tables{}
// calculate table for sliding out bytes. The byte to slide out is used as
// the index for the table, the value contains the following:
// out_table[b] = Hash(b || 0 || ... || 0)
// \ windowsize-1 zero bytes /
// To slide out byte b_0 for window size w with known hash
// H := H(b_0 || ... || b_w), it is sufficient to add out_table[b_0]:
// H(b_0 || ... || b_w) + H(b_0 || 0 || ... || 0)
// = H(b_0 + b_0 || b_1 + 0 || ... || b_w + 0)
// = H( 0 || b_1 || ... || b_w)
//
// Afterwards a new byte can be shifted in.
for b := 0; b < 256; b++ {
var h Pol
h <<= 8
h |= Pol(b)
h = h.Mod(pol)
for i := 0; i < windowsize-1; i++ {
h <<= 8
h |= Pol(0)
h = h.Mod(pol)
}
t.out[b] = h
}
// calculate table for reduction mod Polynomial
k := pol.Deg()
for b := 0; b < 256; b++ {
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
//
// The 8 bits above deg(Polynomial) determine what happens next and so
// these bits are used as a lookup to this table. The value is split in
// two parts: Part A contains the result of the modulus operation, part
// B is used to cancel out the 8 top bits so that one XOR operation is
// enough to reduce modulo Polynomial
t.mod[b] = Pol(uint64(b)<<uint(k)).Mod(pol) | (Pol(b) << uint(k))
}
return t
}
// NewFromPol returns a RabinKarp64 digest from a polynomial over GF(2).
// It is assumed that the input polynomial is irreducible. You can obtain
// such a polynomial using the RandomPolynomial function.
func NewFromPol(p Pol) *RabinKarp64 {
res := &RabinKarp64{
pol: p,
tables: nil,
polShift: uint(p.Deg() - 8),
value: 0,
window: make([]byte, 0, rollinghash.DefaultWindowCap),
oldest: 0,
}
res.updateTables()
return res
}
// New returns a RabinKarp64 digest from the default polynomial obtained
// when using RandomPolynomial with the seed 1.
func New() *RabinKarp64 {
p, err := RandomPolynomial(1)
if err != nil {
panic(err)
}
return NewFromPol(p)
}
// Reset resets the running hash to its initial state
func (d *RabinKarp64) Reset() {
d.tables = nil
d.value = 0
d.window = d.window[:0]
d.oldest = 0
d.updateTables()
}
// Size is 8 bytes
func (d *RabinKarp64) Size() int { return Size }
// BlockSize is 1 byte
func (d *RabinKarp64) BlockSize() int { return 1 }
// Write appends data to the rolling window and updates the digest.
func (d *RabinKarp64) Write(data []byte) (int, error) {
l := len(data)
if l == 0 {
return 0, nil
}
// Re-arrange the window so that the leftmost element is at index 0
n := len(d.window)
if d.oldest != 0 {
tmp := make([]byte, d.oldest)
copy(tmp, d.window[:d.oldest])
copy(d.window, d.window[d.oldest:])
copy(d.window[n-d.oldest:], tmp)
d.oldest = 0
}
d.window = append(d.window, data...)
d.value = 0
for _, b := range d.window {
d.value <<= 8
d.value |= Pol(b)
d.value = d.value.Mod(d.pol)
}
d.updateTables()
return len(d.window), nil
}
// Sum64 returns the hash as a uint64
func (d *RabinKarp64) Sum64() uint64 {
return uint64(d.value)
}
// Sum returns the hash as byte slice
func (d *RabinKarp64) Sum(b []byte) []byte {
v := d.Sum64()
return append(b, byte(v>>56), byte(v>>48), byte(v>>40), byte(v>>32), byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
}
// Roll updates the checksum of the window from the entering byte. You
// MUST initialize a window with Write() before calling this method.
func (d *RabinKarp64) Roll(c byte) {
// This check costs 10-15% performance. If we disable it, we crash
// when the window is empty. If we enable it, we are always correct
// (an empty window never changes no matter how much you roll it).
//if len(d.window) == 0 {
// return
//}
// extract the entering/leaving bytes and update the circular buffer.
enter := c
leave := uint64(d.window[d.oldest])
d.window[d.oldest] = c
d.oldest += 1
if d.oldest >= len(d.window) {
d.oldest = 0
}
d.value ^= d.tables.out[leave]
index := byte(d.value >> d.polShift)
d.value <<= 8
d.value |= Pol(enter)
d.value ^= d.tables.mod[index]
}
|