1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
package btf
import (
"encoding/binary"
"errors"
"fmt"
"math"
"reflect"
"slices"
"strconv"
"strings"
"github.com/cilium/ebpf/asm"
)
// Code in this file is derived from libbpf, which is available under a BSD
// 2-Clause license.
// A constant used when CO-RE relocation has to remove instructions.
//
// Taken from libbpf.
const COREBadRelocationSentinel = 0xbad2310
// COREFixup is the result of computing a CO-RE relocation for a target.
type COREFixup struct {
kind coreKind
local uint64
target uint64
// True if there is no valid fixup. The instruction is replaced with an
// invalid dummy.
poison bool
// True if the validation of the local value should be skipped. Used by
// some kinds of bitfield relocations.
skipLocalValidation bool
}
func (f *COREFixup) equal(other COREFixup) bool {
return f.local == other.local && f.target == other.target
}
func (f *COREFixup) String() string {
if f.poison {
return fmt.Sprintf("%s=poison", f.kind)
}
return fmt.Sprintf("%s=%d->%d", f.kind, f.local, f.target)
}
func (f *COREFixup) Apply(ins *asm.Instruction) error {
if f.poison {
// Relocation is poisoned, replace the instruction with an invalid one.
if ins.OpCode.IsDWordLoad() {
// Replace a dword load with a invalid dword load to preserve instruction size.
*ins = asm.LoadImm(asm.R10, COREBadRelocationSentinel, asm.DWord)
} else {
// Replace all single size instruction with a invalid call instruction.
*ins = asm.BuiltinFunc(COREBadRelocationSentinel).Call()
}
// Add context to the kernel verifier output.
if source := ins.Source(); source != nil {
*ins = ins.WithSource(asm.Comment(fmt.Sprintf("instruction poisoned by CO-RE: %s", source)))
} else {
*ins = ins.WithSource(asm.Comment("instruction poisoned by CO-RE"))
}
return nil
}
switch class := ins.OpCode.Class(); class {
case asm.LdXClass, asm.StClass, asm.StXClass:
if want := int16(f.local); !f.skipLocalValidation && want != ins.Offset {
return fmt.Errorf("invalid offset %d, expected %d", ins.Offset, f.local)
}
if f.target > math.MaxInt16 {
return fmt.Errorf("offset %d exceeds MaxInt16", f.target)
}
ins.Offset = int16(f.target)
case asm.LdClass:
if !ins.IsConstantLoad(asm.DWord) {
return fmt.Errorf("not a dword-sized immediate load")
}
if want := int64(f.local); !f.skipLocalValidation && want != ins.Constant {
return fmt.Errorf("invalid immediate %d, expected %d (fixup: %v)", ins.Constant, want, f)
}
ins.Constant = int64(f.target)
case asm.ALUClass:
if ins.OpCode.ALUOp() == asm.Swap {
return fmt.Errorf("relocation against swap")
}
fallthrough
case asm.ALU64Class:
if src := ins.OpCode.Source(); src != asm.ImmSource {
return fmt.Errorf("invalid source %s", src)
}
if want := int64(f.local); !f.skipLocalValidation && want != ins.Constant {
return fmt.Errorf("invalid immediate %d, expected %d (fixup: %v, kind: %v, ins: %v)", ins.Constant, want, f, f.kind, ins)
}
if f.target > math.MaxInt32 {
return fmt.Errorf("immediate %d exceeds MaxInt32", f.target)
}
ins.Constant = int64(f.target)
default:
return fmt.Errorf("invalid class %s", class)
}
return nil
}
func (f COREFixup) isNonExistant() bool {
return f.kind.checksForExistence() && f.target == 0
}
// coreKind is the type of CO-RE relocation as specified in BPF source code.
type coreKind uint32
const (
reloFieldByteOffset coreKind = iota /* field byte offset */
reloFieldByteSize /* field size in bytes */
reloFieldExists /* field existence in target kernel */
reloFieldSigned /* field signedness (0 - unsigned, 1 - signed) */
reloFieldLShiftU64 /* bitfield-specific left bitshift */
reloFieldRShiftU64 /* bitfield-specific right bitshift */
reloTypeIDLocal /* type ID in local BPF object */
reloTypeIDTarget /* type ID in target kernel */
reloTypeExists /* type existence in target kernel */
reloTypeSize /* type size in bytes */
reloEnumvalExists /* enum value existence in target kernel */
reloEnumvalValue /* enum value integer value */
reloTypeMatches /* type matches kernel type */
)
func (k coreKind) checksForExistence() bool {
return k == reloEnumvalExists || k == reloTypeExists || k == reloFieldExists || k == reloTypeMatches
}
func (k coreKind) String() string {
switch k {
case reloFieldByteOffset:
return "byte_off"
case reloFieldByteSize:
return "byte_sz"
case reloFieldExists:
return "field_exists"
case reloFieldSigned:
return "signed"
case reloFieldLShiftU64:
return "lshift_u64"
case reloFieldRShiftU64:
return "rshift_u64"
case reloTypeIDLocal:
return "local_type_id"
case reloTypeIDTarget:
return "target_type_id"
case reloTypeExists:
return "type_exists"
case reloTypeSize:
return "type_size"
case reloEnumvalExists:
return "enumval_exists"
case reloEnumvalValue:
return "enumval_value"
case reloTypeMatches:
return "type_matches"
default:
return fmt.Sprintf("unknown (%d)", k)
}
}
// CORERelocate calculates changes needed to adjust eBPF instructions for differences
// in types.
//
// targets forms the set of types to relocate against. The first element has to be
// BTF for vmlinux, the following must be types for kernel modules.
//
// resolveLocalTypeID is called for each local type which requires a stable TypeID.
// Calling the function with the same type multiple times must produce the same
// result. It is the callers responsibility to ensure that the relocated instructions
// are loaded with matching BTF.
//
// Returns a list of fixups which can be applied to instructions to make them
// match the target type(s).
//
// Fixups are returned in the order of relos, e.g. fixup[i] is the solution
// for relos[i].
func CORERelocate(relos []*CORERelocation, targets []*Spec, bo binary.ByteOrder, resolveLocalTypeID func(Type) (TypeID, error)) ([]COREFixup, error) {
if len(targets) == 0 {
// Explicitly check for nil here since the argument used to be optional.
return nil, fmt.Errorf("targets must be provided")
}
// We can't encode type IDs that aren't for vmlinux into instructions at the
// moment.
resolveTargetTypeID := targets[0].TypeID
for _, target := range targets {
if bo != target.imm.byteOrder {
return nil, fmt.Errorf("can't relocate %s against %s", bo, target.imm.byteOrder)
}
}
type reloGroup struct {
relos []*CORERelocation
// Position of each relocation in relos.
indices []int
}
// Split relocations into per Type lists.
relosByType := make(map[Type]*reloGroup)
result := make([]COREFixup, len(relos))
for i, relo := range relos {
if relo.kind == reloTypeIDLocal {
// Filtering out reloTypeIDLocal here makes our lives a lot easier
// down the line, since it doesn't have a target at all.
if len(relo.accessor) > 1 || relo.accessor[0] != 0 {
return nil, fmt.Errorf("%s: unexpected accessor %v", relo.kind, relo.accessor)
}
id, err := resolveLocalTypeID(relo.typ)
if err != nil {
return nil, fmt.Errorf("%s: get type id: %w", relo.kind, err)
}
result[i] = COREFixup{
kind: relo.kind,
local: uint64(relo.id),
target: uint64(id),
}
continue
}
group, ok := relosByType[relo.typ]
if !ok {
group = &reloGroup{}
relosByType[relo.typ] = group
}
group.relos = append(group.relos, relo)
group.indices = append(group.indices, i)
}
for localType, group := range relosByType {
localTypeName := localType.TypeName()
if localTypeName == "" {
return nil, fmt.Errorf("relocate unnamed or anonymous type %s: %w", localType, ErrNotSupported)
}
essentialName := newEssentialName(localTypeName)
var targetTypes []Type
for _, target := range targets {
namedTypeIDs := target.imm.namedTypes[essentialName]
targetTypes = slices.Grow(targetTypes, len(namedTypeIDs))
for _, id := range namedTypeIDs {
typ, err := target.TypeByID(id)
if err != nil {
return nil, err
}
targetTypes = append(targetTypes, typ)
}
}
fixups, err := coreCalculateFixups(group.relos, targetTypes, bo, resolveTargetTypeID)
if err != nil {
return nil, fmt.Errorf("relocate %s: %w", localType, err)
}
for j, index := range group.indices {
result[index] = fixups[j]
}
}
return result, nil
}
var errAmbiguousRelocation = errors.New("ambiguous relocation")
var errImpossibleRelocation = errors.New("impossible relocation")
var errIncompatibleTypes = errors.New("incompatible types")
// coreCalculateFixups finds the target type that best matches all relocations.
//
// All relos must target the same type.
//
// The best target is determined by scoring: the less poisoning we have to do
// the better the target is.
func coreCalculateFixups(relos []*CORERelocation, targets []Type, bo binary.ByteOrder, resolveTargetTypeID func(Type) (TypeID, error)) ([]COREFixup, error) {
bestScore := len(relos)
var bestFixups []COREFixup
for _, target := range targets {
score := 0 // lower is better
fixups := make([]COREFixup, 0, len(relos))
for _, relo := range relos {
fixup, err := coreCalculateFixup(relo, target, bo, resolveTargetTypeID)
if err != nil {
return nil, fmt.Errorf("target %s: %s: %w", target, relo.kind, err)
}
if fixup.poison || fixup.isNonExistant() {
score++
}
fixups = append(fixups, fixup)
}
if score > bestScore {
// We have a better target already, ignore this one.
continue
}
if score < bestScore {
// This is the best target yet, use it.
bestScore = score
bestFixups = fixups
continue
}
// Some other target has the same score as the current one. Make sure
// the fixups agree with each other.
for i, fixup := range bestFixups {
if !fixup.equal(fixups[i]) {
return nil, fmt.Errorf("%s: multiple types match: %w", fixup.kind, errAmbiguousRelocation)
}
}
}
if bestFixups == nil {
// Nothing at all matched, probably because there are no suitable
// targets at all.
//
// Poison everything except checksForExistence.
bestFixups = make([]COREFixup, len(relos))
for i, relo := range relos {
if relo.kind.checksForExistence() {
bestFixups[i] = COREFixup{kind: relo.kind, local: 1, target: 0}
} else {
bestFixups[i] = COREFixup{kind: relo.kind, poison: true}
}
}
}
return bestFixups, nil
}
var errNoSignedness = errors.New("no signedness")
// coreCalculateFixup calculates the fixup given a relocation and a target type.
func coreCalculateFixup(relo *CORERelocation, target Type, bo binary.ByteOrder, resolveTargetTypeID func(Type) (TypeID, error)) (COREFixup, error) {
fixup := func(local, target uint64) (COREFixup, error) {
return COREFixup{kind: relo.kind, local: local, target: target}, nil
}
fixupWithoutValidation := func(local, target uint64) (COREFixup, error) {
return COREFixup{kind: relo.kind, local: local, target: target, skipLocalValidation: true}, nil
}
poison := func() (COREFixup, error) {
if relo.kind.checksForExistence() {
return fixup(1, 0)
}
return COREFixup{kind: relo.kind, poison: true}, nil
}
zero := COREFixup{}
local := relo.typ
switch relo.kind {
case reloTypeMatches:
if len(relo.accessor) > 1 || relo.accessor[0] != 0 {
return zero, fmt.Errorf("unexpected accessor %v", relo.accessor)
}
err := coreTypesMatch(local, target, nil)
if errors.Is(err, errIncompatibleTypes) {
return poison()
}
if err != nil {
return zero, err
}
return fixup(1, 1)
case reloTypeIDTarget, reloTypeSize, reloTypeExists:
if len(relo.accessor) > 1 || relo.accessor[0] != 0 {
return zero, fmt.Errorf("unexpected accessor %v", relo.accessor)
}
err := CheckTypeCompatibility(local, target)
if errors.Is(err, errIncompatibleTypes) {
return poison()
}
if err != nil {
return zero, err
}
switch relo.kind {
case reloTypeExists:
return fixup(1, 1)
case reloTypeIDTarget:
targetID, err := resolveTargetTypeID(target)
if errors.Is(err, ErrNotFound) {
// Probably a relocation trying to get the ID
// of a type from a kmod.
return poison()
}
if err != nil {
return zero, err
}
return fixup(uint64(relo.id), uint64(targetID))
case reloTypeSize:
localSize, err := Sizeof(local)
if err != nil {
return zero, err
}
targetSize, err := Sizeof(target)
if err != nil {
return zero, err
}
return fixup(uint64(localSize), uint64(targetSize))
}
case reloEnumvalValue, reloEnumvalExists:
localValue, targetValue, err := coreFindEnumValue(local, relo.accessor, target)
if errors.Is(err, errImpossibleRelocation) {
return poison()
}
if err != nil {
return zero, err
}
switch relo.kind {
case reloEnumvalExists:
return fixup(1, 1)
case reloEnumvalValue:
return fixup(localValue.Value, targetValue.Value)
}
case reloFieldByteOffset, reloFieldByteSize, reloFieldExists, reloFieldLShiftU64, reloFieldRShiftU64, reloFieldSigned:
if _, ok := As[*Fwd](target); ok {
// We can't relocate fields using a forward declaration, so
// skip it. If a non-forward declaration is present in the BTF
// we'll find it in one of the other iterations.
return poison()
}
localField, targetField, err := coreFindField(local, relo.accessor, target)
if errors.Is(err, errImpossibleRelocation) {
return poison()
}
if err != nil {
return zero, err
}
maybeSkipValidation := func(f COREFixup, err error) (COREFixup, error) {
f.skipLocalValidation = localField.bitfieldSize > 0
return f, err
}
switch relo.kind {
case reloFieldExists:
return fixup(1, 1)
case reloFieldByteOffset:
return maybeSkipValidation(fixup(uint64(localField.offset), uint64(targetField.offset)))
case reloFieldByteSize:
localSize, err := Sizeof(localField.Type)
if err != nil {
return zero, err
}
targetSize, err := Sizeof(targetField.Type)
if err != nil {
return zero, err
}
return maybeSkipValidation(fixup(uint64(localSize), uint64(targetSize)))
case reloFieldLShiftU64:
var target uint64
if bo == binary.LittleEndian {
targetSize, err := targetField.sizeBits()
if err != nil {
return zero, err
}
target = uint64(64 - targetField.bitfieldOffset - targetSize)
} else {
loadWidth, err := Sizeof(targetField.Type)
if err != nil {
return zero, err
}
target = uint64(64 - Bits(loadWidth*8) + targetField.bitfieldOffset)
}
return fixupWithoutValidation(0, target)
case reloFieldRShiftU64:
targetSize, err := targetField.sizeBits()
if err != nil {
return zero, err
}
return fixupWithoutValidation(0, uint64(64-targetSize))
case reloFieldSigned:
switch local := UnderlyingType(localField.Type).(type) {
case *Enum:
target, ok := As[*Enum](targetField.Type)
if !ok {
return zero, fmt.Errorf("target isn't *Enum but %T", targetField.Type)
}
return fixup(boolToUint64(local.Signed), boolToUint64(target.Signed))
case *Int:
target, ok := As[*Int](targetField.Type)
if !ok {
return zero, fmt.Errorf("target isn't *Int but %T", targetField.Type)
}
return fixup(
uint64(local.Encoding&Signed),
uint64(target.Encoding&Signed),
)
default:
return zero, fmt.Errorf("type %T: %w", local, errNoSignedness)
}
}
}
return zero, ErrNotSupported
}
func boolToUint64(val bool) uint64 {
if val {
return 1
}
return 0
}
/* coreAccessor contains a path through a struct. It contains at least one index.
*
* The interpretation depends on the kind of the relocation. The following is
* taken from struct bpf_core_relo in libbpf_internal.h:
*
* - for field-based relocations, string encodes an accessed field using
* a sequence of field and array indices, separated by colon (:). It's
* conceptually very close to LLVM's getelementptr ([0]) instruction's
* arguments for identifying offset to a field.
* - for type-based relocations, strings is expected to be just "0";
* - for enum value-based relocations, string contains an index of enum
* value within its enum type;
*
* Example to provide a better feel.
*
* struct sample {
* int a;
* struct {
* int b[10];
* };
* };
*
* struct sample s = ...;
* int x = &s->a; // encoded as "0:0" (a is field #0)
* int y = &s->b[5]; // encoded as "0:1:0:5" (anon struct is field #1,
* // b is field #0 inside anon struct, accessing elem #5)
* int z = &s[10]->b; // encoded as "10:1" (ptr is used as an array)
*/
type coreAccessor []int
func parseCOREAccessor(accessor string) (coreAccessor, error) {
if accessor == "" {
return nil, fmt.Errorf("empty accessor")
}
parts := strings.Split(accessor, ":")
result := make(coreAccessor, 0, len(parts))
for _, part := range parts {
// 31 bits to avoid overflowing int on 32 bit platforms.
index, err := strconv.ParseUint(part, 10, 31)
if err != nil {
return nil, fmt.Errorf("accessor index %q: %s", part, err)
}
result = append(result, int(index))
}
return result, nil
}
func (ca coreAccessor) String() string {
strs := make([]string, 0, len(ca))
for _, i := range ca {
strs = append(strs, strconv.Itoa(i))
}
return strings.Join(strs, ":")
}
func (ca coreAccessor) enumValue(t Type) (*EnumValue, error) {
e, ok := As[*Enum](t)
if !ok {
return nil, fmt.Errorf("not an enum: %s", t)
}
if len(ca) > 1 {
return nil, fmt.Errorf("invalid accessor %s for enum", ca)
}
i := ca[0]
if i >= len(e.Values) {
return nil, fmt.Errorf("invalid index %d for %s", i, e)
}
return &e.Values[i], nil
}
// coreField represents the position of a "child" of a composite type from the
// start of that type.
//
// /- start of composite
// | offset * 8 | bitfieldOffset | bitfieldSize | ... |
// \- start of field end of field -/
type coreField struct {
Type Type
// The position of the field from the start of the composite type in bytes.
offset uint32
// The offset of the bitfield in bits from the start of the field.
bitfieldOffset Bits
// The size of the bitfield in bits.
//
// Zero if the field is not a bitfield.
bitfieldSize Bits
}
func (cf *coreField) adjustOffsetToNthElement(n int) error {
if n == 0 {
return nil
}
size, err := Sizeof(cf.Type)
if err != nil {
return err
}
cf.offset += uint32(n) * uint32(size)
return nil
}
func (cf *coreField) adjustOffsetBits(offset Bits) error {
align, err := alignof(cf.Type)
if err != nil {
return err
}
// We can compute the load offset by:
// 1) converting the bit offset to bytes with a flooring division.
// 2) dividing and multiplying that offset by the alignment, yielding the
// load size aligned offset.
offsetBytes := uint32(offset/8) / uint32(align) * uint32(align)
// The number of bits remaining is the bit offset less the number of bits
// we can "skip" with the aligned offset.
cf.bitfieldOffset = offset - Bits(offsetBytes*8)
// We know that cf.offset is aligned at to at least align since we get it
// from the compiler via BTF. Adding an aligned offsetBytes preserves the
// alignment.
cf.offset += offsetBytes
return nil
}
func (cf *coreField) sizeBits() (Bits, error) {
if cf.bitfieldSize > 0 {
return cf.bitfieldSize, nil
}
// Someone is trying to access a non-bitfield via a bit shift relocation.
// This happens when a field changes from a bitfield to a regular field
// between kernel versions. Synthesise the size to make the shifts work.
size, err := Sizeof(cf.Type)
if err != nil {
return 0, err
}
return Bits(size * 8), nil
}
// coreFindField descends into the local type using the accessor and tries to
// find an equivalent field in target at each step.
//
// Returns the field and the offset of the field from the start of
// target in bits.
func coreFindField(localT Type, localAcc coreAccessor, targetT Type) (coreField, coreField, error) {
local := coreField{Type: localT}
target := coreField{Type: targetT}
if err := coreAreMembersCompatible(local.Type, target.Type); err != nil {
return coreField{}, coreField{}, fmt.Errorf("fields: %w", err)
}
// The first index is used to offset a pointer of the base type like
// when accessing an array.
if err := local.adjustOffsetToNthElement(localAcc[0]); err != nil {
return coreField{}, coreField{}, err
}
if err := target.adjustOffsetToNthElement(localAcc[0]); err != nil {
return coreField{}, coreField{}, err
}
var localMaybeFlex, targetMaybeFlex bool
for i, acc := range localAcc[1:] {
switch localType := UnderlyingType(local.Type).(type) {
case composite:
// For composite types acc is used to find the field in the local type,
// and then we try to find a field in target with the same name.
localMembers := localType.members()
if acc >= len(localMembers) {
return coreField{}, coreField{}, fmt.Errorf("invalid accessor %d for %s", acc, localType)
}
localMember := localMembers[acc]
if localMember.Name == "" {
localMemberType, ok := As[composite](localMember.Type)
if !ok {
return coreField{}, coreField{}, fmt.Errorf("unnamed field with type %s: %s", localMember.Type, ErrNotSupported)
}
// This is an anonymous struct or union, ignore it.
local = coreField{
Type: localMemberType,
offset: local.offset + localMember.Offset.Bytes(),
}
localMaybeFlex = false
continue
}
targetType, ok := As[composite](target.Type)
if !ok {
return coreField{}, coreField{}, fmt.Errorf("target not composite: %w", errImpossibleRelocation)
}
targetMember, last, err := coreFindMember(targetType, localMember.Name)
if err != nil {
return coreField{}, coreField{}, err
}
local = coreField{
Type: localMember.Type,
offset: local.offset,
bitfieldSize: localMember.BitfieldSize,
}
localMaybeFlex = acc == len(localMembers)-1
target = coreField{
Type: targetMember.Type,
offset: target.offset,
bitfieldSize: targetMember.BitfieldSize,
}
targetMaybeFlex = last
if local.bitfieldSize == 0 && target.bitfieldSize == 0 {
local.offset += localMember.Offset.Bytes()
target.offset += targetMember.Offset.Bytes()
break
}
// Either of the members is a bitfield. Make sure we're at the
// end of the accessor.
if next := i + 1; next < len(localAcc[1:]) {
return coreField{}, coreField{}, fmt.Errorf("can't descend into bitfield")
}
if err := local.adjustOffsetBits(localMember.Offset); err != nil {
return coreField{}, coreField{}, err
}
if err := target.adjustOffsetBits(targetMember.Offset); err != nil {
return coreField{}, coreField{}, err
}
case *Array:
// For arrays, acc is the index in the target.
targetType, ok := As[*Array](target.Type)
if !ok {
return coreField{}, coreField{}, fmt.Errorf("target not array: %w", errImpossibleRelocation)
}
if localType.Nelems == 0 && !localMaybeFlex {
return coreField{}, coreField{}, fmt.Errorf("local type has invalid flexible array")
}
if targetType.Nelems == 0 && !targetMaybeFlex {
return coreField{}, coreField{}, fmt.Errorf("target type has invalid flexible array")
}
if localType.Nelems > 0 && acc >= int(localType.Nelems) {
return coreField{}, coreField{}, fmt.Errorf("invalid access of %s at index %d", localType, acc)
}
if targetType.Nelems > 0 && acc >= int(targetType.Nelems) {
return coreField{}, coreField{}, fmt.Errorf("out of bounds access of target: %w", errImpossibleRelocation)
}
local = coreField{
Type: localType.Type,
offset: local.offset,
}
localMaybeFlex = false
if err := local.adjustOffsetToNthElement(acc); err != nil {
return coreField{}, coreField{}, err
}
target = coreField{
Type: targetType.Type,
offset: target.offset,
}
targetMaybeFlex = false
if err := target.adjustOffsetToNthElement(acc); err != nil {
return coreField{}, coreField{}, err
}
default:
return coreField{}, coreField{}, fmt.Errorf("relocate field of %T: %w", localType, ErrNotSupported)
}
if err := coreAreMembersCompatible(local.Type, target.Type); err != nil {
return coreField{}, coreField{}, err
}
}
return local, target, nil
}
// coreFindMember finds a member in a composite type while handling anonymous
// structs and unions.
func coreFindMember(typ composite, name string) (Member, bool, error) {
if name == "" {
return Member{}, false, errors.New("can't search for anonymous member")
}
type offsetTarget struct {
composite
offset Bits
}
targets := []offsetTarget{{typ, 0}}
visited := make(map[composite]bool)
for i := 0; i < len(targets); i++ {
target := targets[i]
// Only visit targets once to prevent infinite recursion.
if visited[target] {
continue
}
if len(visited) >= maxResolveDepth {
// This check is different than libbpf, which restricts the entire
// path to BPF_CORE_SPEC_MAX_LEN items.
return Member{}, false, fmt.Errorf("type is nested too deep")
}
visited[target] = true
members := target.members()
for j, member := range members {
if member.Name == name {
// NB: This is safe because member is a copy.
member.Offset += target.offset
return member, j == len(members)-1, nil
}
// The names don't match, but this member could be an anonymous struct
// or union.
if member.Name != "" {
continue
}
comp, ok := As[composite](member.Type)
if !ok {
return Member{}, false, fmt.Errorf("anonymous non-composite type %T not allowed", member.Type)
}
targets = append(targets, offsetTarget{comp, target.offset + member.Offset})
}
}
return Member{}, false, fmt.Errorf("no matching member: %w", errImpossibleRelocation)
}
// coreFindEnumValue follows localAcc to find the equivalent enum value in target.
func coreFindEnumValue(local Type, localAcc coreAccessor, target Type) (localValue, targetValue *EnumValue, _ error) {
localValue, err := localAcc.enumValue(local)
if err != nil {
return nil, nil, err
}
targetEnum, ok := As[*Enum](target)
if !ok {
return nil, nil, errImpossibleRelocation
}
localName := newEssentialName(localValue.Name)
for i, targetValue := range targetEnum.Values {
if newEssentialName(targetValue.Name) != localName {
continue
}
return localValue, &targetEnum.Values[i], nil
}
return nil, nil, errImpossibleRelocation
}
// CheckTypeCompatibility checks local and target types for Compatibility according to CO-RE rules.
//
// Only layout compatibility is checked, ignoring names of the root type.
func CheckTypeCompatibility(localType Type, targetType Type) error {
return coreAreTypesCompatible(localType, targetType, nil)
}
type pair struct {
A, B Type
}
/* The comment below is from bpf_core_types_are_compat in libbpf.c:
*
* Check local and target types for compatibility. This check is used for
* type-based CO-RE relocations and follow slightly different rules than
* field-based relocations. This function assumes that root types were already
* checked for name match. Beyond that initial root-level name check, names
* are completely ignored. Compatibility rules are as follows:
* - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
* kind should match for local and target types (i.e., STRUCT is not
* compatible with UNION);
* - for ENUMs, the size is ignored;
* - for INT, size and signedness are ignored;
* - for ARRAY, dimensionality is ignored, element types are checked for
* compatibility recursively;
* - CONST/VOLATILE/RESTRICT modifiers are ignored;
* - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
* - FUNC_PROTOs are compatible if they have compatible signature: same
* number of input args and compatible return and argument types.
* These rules are not set in stone and probably will be adjusted as we get
* more experience with using BPF CO-RE relocations.
*
* Returns errIncompatibleTypes if types are not compatible.
*/
func coreAreTypesCompatible(localType Type, targetType Type, visited map[pair]struct{}) error {
localType = UnderlyingType(localType)
targetType = UnderlyingType(targetType)
if reflect.TypeOf(localType) != reflect.TypeOf(targetType) {
return fmt.Errorf("type mismatch between %v and %v: %w", localType, targetType, errIncompatibleTypes)
}
if _, ok := visited[pair{localType, targetType}]; ok {
return nil
}
if visited == nil {
visited = make(map[pair]struct{})
}
visited[pair{localType, targetType}] = struct{}{}
switch lv := localType.(type) {
case *Void, *Struct, *Union, *Enum, *Fwd, *Int:
return nil
case *Pointer:
tv := targetType.(*Pointer)
return coreAreTypesCompatible(lv.Target, tv.Target, visited)
case *Array:
tv := targetType.(*Array)
if err := coreAreTypesCompatible(lv.Index, tv.Index, visited); err != nil {
return err
}
return coreAreTypesCompatible(lv.Type, tv.Type, visited)
case *FuncProto:
tv := targetType.(*FuncProto)
if err := coreAreTypesCompatible(lv.Return, tv.Return, visited); err != nil {
return err
}
if len(lv.Params) != len(tv.Params) {
return fmt.Errorf("function param mismatch: %w", errIncompatibleTypes)
}
for i, localParam := range lv.Params {
targetParam := tv.Params[i]
if err := coreAreTypesCompatible(localParam.Type, targetParam.Type, visited); err != nil {
return err
}
}
return nil
default:
return fmt.Errorf("unsupported type %T", localType)
}
}
/* coreAreMembersCompatible checks two types for field-based relocation compatibility.
*
* The comment below is from bpf_core_fields_are_compat in libbpf.c:
*
* Check two types for compatibility for the purpose of field access
* relocation. const/volatile/restrict and typedefs are skipped to ensure we
* are relocating semantically compatible entities:
* - any two STRUCTs/UNIONs are compatible and can be mixed;
* - any two FWDs are compatible, if their names match (modulo flavor suffix);
* - any two PTRs are always compatible;
* - for ENUMs, names should be the same (ignoring flavor suffix) or at
* least one of enums should be anonymous;
* - for ENUMs, check sizes, names are ignored;
* - for INT, size and signedness are ignored;
* - any two FLOATs are always compatible;
* - for ARRAY, dimensionality is ignored, element types are checked for
* compatibility recursively;
* [ NB: coreAreMembersCompatible doesn't recurse, this check is done
* by coreFindField. ]
* - everything else shouldn't be ever a target of relocation.
* These rules are not set in stone and probably will be adjusted as we get
* more experience with using BPF CO-RE relocations.
*
* Returns errImpossibleRelocation if the members are not compatible.
*/
func coreAreMembersCompatible(localType Type, targetType Type) error {
localType = UnderlyingType(localType)
targetType = UnderlyingType(targetType)
_, lok := localType.(composite)
_, tok := targetType.(composite)
if lok && tok {
return nil
}
if reflect.TypeOf(localType) != reflect.TypeOf(targetType) {
return fmt.Errorf("type mismatch: %w", errImpossibleRelocation)
}
switch lv := localType.(type) {
case *Array, *Pointer, *Float, *Int:
return nil
case *Enum:
tv := targetType.(*Enum)
if !coreEssentialNamesMatch(lv.Name, tv.Name) {
return fmt.Errorf("names %q and %q don't match: %w", lv.Name, tv.Name, errImpossibleRelocation)
}
return nil
case *Fwd:
tv := targetType.(*Fwd)
if !coreEssentialNamesMatch(lv.Name, tv.Name) {
return fmt.Errorf("names %q and %q don't match: %w", lv.Name, tv.Name, errImpossibleRelocation)
}
return nil
default:
return fmt.Errorf("type %s: %w", localType, ErrNotSupported)
}
}
// coreEssentialNamesMatch compares two names while ignoring their flavour suffix.
//
// This should only be used on names which are in the global scope, like struct
// names, typedefs or enum values.
func coreEssentialNamesMatch(a, b string) bool {
if a == "" || b == "" {
// allow anonymous and named type to match
return true
}
return newEssentialName(a) == newEssentialName(b)
}
/* The comment below is from __bpf_core_types_match in relo_core.c:
*
* Check that two types "match". This function assumes that root types were
* already checked for name match.
*
* The matching relation is defined as follows:
* - modifiers and typedefs are stripped (and, hence, effectively ignored)
* - generally speaking types need to be of same kind (struct vs. struct, union
* vs. union, etc.)
* - exceptions are struct/union behind a pointer which could also match a
* forward declaration of a struct or union, respectively, and enum vs.
* enum64 (see below)
* Then, depending on type:
* - integers:
* - match if size and signedness match
* - arrays & pointers:
* - target types are recursively matched
* - structs & unions:
* - local members need to exist in target with the same name
* - for each member we recursively check match unless it is already behind a
* pointer, in which case we only check matching names and compatible kind
* - enums:
* - local variants have to have a match in target by symbolic name (but not
* numeric value)
* - size has to match (but enum may match enum64 and vice versa)
* - function pointers:
* - number and position of arguments in local type has to match target
* - for each argument and the return value we recursively check match
*/
func coreTypesMatch(localType Type, targetType Type, visited map[pair]struct{}) error {
localType = UnderlyingType(localType)
targetType = UnderlyingType(targetType)
if !coreEssentialNamesMatch(localType.TypeName(), targetType.TypeName()) {
return fmt.Errorf("type name %q don't match %q: %w", localType.TypeName(), targetType.TypeName(), errIncompatibleTypes)
}
if reflect.TypeOf(localType) != reflect.TypeOf(targetType) {
return fmt.Errorf("type mismatch between %v and %v: %w", localType, targetType, errIncompatibleTypes)
}
if _, ok := visited[pair{localType, targetType}]; ok {
return nil
}
if visited == nil {
visited = make(map[pair]struct{})
}
visited[pair{localType, targetType}] = struct{}{}
switch lv := (localType).(type) {
case *Void:
case *Fwd:
if targetType.(*Fwd).Kind != lv.Kind {
return fmt.Errorf("fwd kind mismatch between %v and %v: %w", localType, targetType, errIncompatibleTypes)
}
case *Enum:
return coreEnumsMatch(lv, targetType.(*Enum))
case composite:
tv := targetType.(composite)
if len(lv.members()) > len(tv.members()) {
return errIncompatibleTypes
}
localMembers := lv.members()
targetMembers := map[string]Member{}
for _, member := range tv.members() {
targetMembers[member.Name] = member
}
for _, localMember := range localMembers {
targetMember, found := targetMembers[localMember.Name]
if !found {
return fmt.Errorf("no field %q in %v: %w", localMember.Name, targetType, errIncompatibleTypes)
}
err := coreTypesMatch(localMember.Type, targetMember.Type, visited)
if err != nil {
return err
}
}
case *Int:
if !coreEncodingMatches(lv, targetType.(*Int)) {
return fmt.Errorf("int mismatch between %v and %v: %w", localType, targetType, errIncompatibleTypes)
}
case *Pointer:
tv := targetType.(*Pointer)
// Allow a pointer to a forward declaration to match a struct
// or union.
if fwd, ok := As[*Fwd](lv.Target); ok && fwd.matches(tv.Target) {
return nil
}
if fwd, ok := As[*Fwd](tv.Target); ok && fwd.matches(lv.Target) {
return nil
}
return coreTypesMatch(lv.Target, tv.Target, visited)
case *Array:
tv := targetType.(*Array)
if lv.Nelems != tv.Nelems {
return fmt.Errorf("array mismatch between %v and %v: %w", localType, targetType, errIncompatibleTypes)
}
return coreTypesMatch(lv.Type, tv.Type, visited)
case *FuncProto:
tv := targetType.(*FuncProto)
if len(lv.Params) != len(tv.Params) {
return fmt.Errorf("function param mismatch: %w", errIncompatibleTypes)
}
for i, lparam := range lv.Params {
if err := coreTypesMatch(lparam.Type, tv.Params[i].Type, visited); err != nil {
return err
}
}
return coreTypesMatch(lv.Return, tv.Return, visited)
default:
return fmt.Errorf("unsupported type %T", localType)
}
return nil
}
// coreEncodingMatches returns true if both ints have the same size and signedness.
// All encodings other than `Signed` are considered unsigned.
func coreEncodingMatches(local, target *Int) bool {
return local.Size == target.Size && (local.Encoding == Signed) == (target.Encoding == Signed)
}
// coreEnumsMatch checks two enums match, which is considered to be the case if the following is true:
// - size has to match (but enum may match enum64 and vice versa)
// - local variants have to have a match in target by symbolic name (but not numeric value)
func coreEnumsMatch(local *Enum, target *Enum) error {
if local.Size != target.Size {
return fmt.Errorf("size mismatch between %v and %v: %w", local, target, errIncompatibleTypes)
}
// If there are more values in the local than the target, there must be at least one value in the local
// that isn't in the target, and therefor the types are incompatible.
if len(local.Values) > len(target.Values) {
return fmt.Errorf("local has more values than target: %w", errIncompatibleTypes)
}
outer:
for _, lv := range local.Values {
for _, rv := range target.Values {
if coreEssentialNamesMatch(lv.Name, rv.Name) {
continue outer
}
}
return fmt.Errorf("no match for %v in %v: %w", lv, target, errIncompatibleTypes)
}
return nil
}
|