File: types.go

package info (click to toggle)
golang-github-cilium-ebpf 0.17.3%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 4,684 kB
  • sloc: ansic: 1,259; makefile: 127; python: 113; awk: 29; sh: 24
file content (1417 lines) | stat: -rw-r--r-- 34,512 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
package btf

import (
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"
	"slices"
	"strings"

	"github.com/cilium/ebpf/asm"
	"github.com/cilium/ebpf/internal"
	"github.com/cilium/ebpf/internal/sys"
)

// Mirrors MAX_RESOLVE_DEPTH in libbpf.
// https://github.com/libbpf/libbpf/blob/e26b84dc330c9644c07428c271ab491b0f01f4e1/src/btf.c#L761
const maxResolveDepth = 32

// TypeID identifies a type in a BTF section.
type TypeID = sys.TypeID

// Type represents a type described by BTF.
//
// Identity of Type follows the [Go specification]: two Types are considered
// equal if they have the same concrete type and the same dynamic value, aka
// they point at the same location in memory. This means that the following
// Types are considered distinct even though they have the same "shape".
//
//	a := &Int{Size: 1}
//	b := &Int{Size: 1}
//	a != b
//
// [Go specification]: https://go.dev/ref/spec#Comparison_operators
type Type interface {
	// Type can be formatted using the %s and %v verbs. %s outputs only the
	// identity of the type, without any detail. %v outputs additional detail.
	//
	// Use the '+' flag to include the address of the type.
	//
	// Use the width to specify how many levels of detail to output, for example
	// %1v will output detail for the root type and a short description of its
	// children. %2v would output details of the root type and its children
	// as well as a short description of the grandchildren.
	fmt.Formatter

	// Name of the type, empty for anonymous types and types that cannot
	// carry a name, like Void and Pointer.
	TypeName() string

	// Make a copy of the type, without copying Type members.
	copy() Type

	// New implementations must update walkType.
}

var (
	_ Type = (*Int)(nil)
	_ Type = (*Struct)(nil)
	_ Type = (*Union)(nil)
	_ Type = (*Enum)(nil)
	_ Type = (*Fwd)(nil)
	_ Type = (*Func)(nil)
	_ Type = (*Typedef)(nil)
	_ Type = (*Var)(nil)
	_ Type = (*Datasec)(nil)
	_ Type = (*Float)(nil)
	_ Type = (*declTag)(nil)
	_ Type = (*TypeTag)(nil)
	_ Type = (*cycle)(nil)
)

// Void is the unit type of BTF.
type Void struct{}

func (v *Void) Format(fs fmt.State, verb rune) { formatType(fs, verb, v) }
func (v *Void) TypeName() string               { return "" }
func (v *Void) size() uint32                   { return 0 }
func (v *Void) copy() Type                     { return (*Void)(nil) }

type IntEncoding byte

// Valid IntEncodings.
//
// These may look like they are flags, but they aren't.
const (
	Unsigned IntEncoding = 0
	Signed   IntEncoding = 1
	Char     IntEncoding = 2
	Bool     IntEncoding = 4
)

func (ie IntEncoding) String() string {
	switch ie {
	case Char:
		// NB: There is no way to determine signedness for char.
		return "char"
	case Bool:
		return "bool"
	case Signed:
		return "signed"
	case Unsigned:
		return "unsigned"
	default:
		return fmt.Sprintf("IntEncoding(%d)", byte(ie))
	}
}

// Int is an integer of a given length.
//
// See https://www.kernel.org/doc/html/latest/bpf/btf.html#btf-kind-int
type Int struct {
	Name string

	// The size of the integer in bytes.
	Size     uint32
	Encoding IntEncoding
}

func (i *Int) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, i, i.Encoding, "size=", i.Size)
}

func (i *Int) TypeName() string { return i.Name }
func (i *Int) size() uint32     { return i.Size }
func (i *Int) copy() Type {
	cpy := *i
	return &cpy
}

// Pointer is a pointer to another type.
type Pointer struct {
	Target Type
}

func (p *Pointer) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, p, "target=", p.Target)
}

func (p *Pointer) TypeName() string { return "" }
func (p *Pointer) size() uint32     { return 8 }
func (p *Pointer) copy() Type {
	cpy := *p
	return &cpy
}

// Array is an array with a fixed number of elements.
type Array struct {
	Index  Type
	Type   Type
	Nelems uint32
}

func (arr *Array) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, arr, "index=", arr.Index, "type=", arr.Type, "n=", arr.Nelems)
}

func (arr *Array) TypeName() string { return "" }

func (arr *Array) copy() Type {
	cpy := *arr
	return &cpy
}

// Struct is a compound type of consecutive members.
type Struct struct {
	Name string
	// The size of the struct including padding, in bytes
	Size    uint32
	Members []Member
	Tags    []string
}

func (s *Struct) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, s, "fields=", len(s.Members))
}

func (s *Struct) TypeName() string { return s.Name }

func (s *Struct) size() uint32 { return s.Size }

func (s *Struct) copy() Type {
	cpy := *s
	cpy.Members = copyMembers(s.Members)
	cpy.Tags = copyTags(cpy.Tags)
	return &cpy
}

func (s *Struct) members() []Member {
	return s.Members
}

// Union is a compound type where members occupy the same memory.
type Union struct {
	Name string
	// The size of the union including padding, in bytes.
	Size    uint32
	Members []Member
	Tags    []string
}

func (u *Union) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, u, "fields=", len(u.Members))
}

func (u *Union) TypeName() string { return u.Name }

func (u *Union) size() uint32 { return u.Size }

func (u *Union) copy() Type {
	cpy := *u
	cpy.Members = copyMembers(u.Members)
	cpy.Tags = copyTags(cpy.Tags)
	return &cpy
}

func (u *Union) members() []Member {
	return u.Members
}

func copyMembers(orig []Member) []Member {
	cpy := make([]Member, len(orig))
	copy(cpy, orig)
	for i, member := range cpy {
		cpy[i].Tags = copyTags(member.Tags)
	}
	return cpy
}

func copyTags(orig []string) []string {
	if orig == nil { // preserve nil vs zero-len slice distinction
		return nil
	}
	cpy := make([]string, len(orig))
	copy(cpy, orig)
	return cpy
}

type composite interface {
	Type
	members() []Member
}

var (
	_ composite = (*Struct)(nil)
	_ composite = (*Union)(nil)
)

// A value in bits.
type Bits uint32

// Bytes converts a bit value into bytes.
func (b Bits) Bytes() uint32 {
	return uint32(b / 8)
}

// Member is part of a Struct or Union.
//
// It is not a valid Type.
type Member struct {
	Name         string
	Type         Type
	Offset       Bits
	BitfieldSize Bits
	Tags         []string
}

// Enum lists possible values.
type Enum struct {
	Name string
	// Size of the enum value in bytes.
	Size uint32
	// True if the values should be interpreted as signed integers.
	Signed bool
	Values []EnumValue
}

func (e *Enum) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, e, "size=", e.Size, "values=", len(e.Values))
}

func (e *Enum) TypeName() string { return e.Name }

// EnumValue is part of an Enum
//
// Is is not a valid Type
type EnumValue struct {
	Name  string
	Value uint64
}

func (e *Enum) size() uint32 { return e.Size }
func (e *Enum) copy() Type {
	cpy := *e
	cpy.Values = make([]EnumValue, len(e.Values))
	copy(cpy.Values, e.Values)
	return &cpy
}

// FwdKind is the type of forward declaration.
type FwdKind int

// Valid types of forward declaration.
const (
	FwdStruct FwdKind = iota
	FwdUnion
)

func (fk FwdKind) String() string {
	switch fk {
	case FwdStruct:
		return "struct"
	case FwdUnion:
		return "union"
	default:
		return fmt.Sprintf("%T(%d)", fk, int(fk))
	}
}

// Fwd is a forward declaration of a Type.
type Fwd struct {
	Name string
	Kind FwdKind
}

func (f *Fwd) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, f, f.Kind)
}

func (f *Fwd) TypeName() string { return f.Name }

func (f *Fwd) copy() Type {
	cpy := *f
	return &cpy
}

func (f *Fwd) matches(typ Type) bool {
	if _, ok := As[*Struct](typ); ok && f.Kind == FwdStruct {
		return true
	}

	if _, ok := As[*Union](typ); ok && f.Kind == FwdUnion {
		return true
	}

	return false
}

// Typedef is an alias of a Type.
type Typedef struct {
	Name string
	Type Type
	Tags []string
}

func (td *Typedef) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, td, td.Type)
}

func (td *Typedef) TypeName() string { return td.Name }

func (td *Typedef) copy() Type {
	cpy := *td
	cpy.Tags = copyTags(td.Tags)
	return &cpy
}

// Volatile is a qualifier.
type Volatile struct {
	Type Type
}

func (v *Volatile) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, v, v.Type)
}

func (v *Volatile) TypeName() string { return "" }

func (v *Volatile) qualify() Type { return v.Type }
func (v *Volatile) copy() Type {
	cpy := *v
	return &cpy
}

// Const is a qualifier.
type Const struct {
	Type Type
}

func (c *Const) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, c, c.Type)
}

func (c *Const) TypeName() string { return "" }

func (c *Const) qualify() Type { return c.Type }
func (c *Const) copy() Type {
	cpy := *c
	return &cpy
}

// Restrict is a qualifier.
type Restrict struct {
	Type Type
}

func (r *Restrict) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, r, r.Type)
}

func (r *Restrict) TypeName() string { return "" }

func (r *Restrict) qualify() Type { return r.Type }
func (r *Restrict) copy() Type {
	cpy := *r
	return &cpy
}

// Func is a function definition.
type Func struct {
	Name    string
	Type    Type
	Linkage FuncLinkage
	Tags    []string
	// ParamTags holds a list of tags for each parameter of the FuncProto to which `Type` points.
	// If no tags are present for any param, the outer slice will be nil/len(ParamTags)==0.
	// If at least 1 param has a tag, the outer slice will have the same length as the number of params.
	// The inner slice contains the tags and may be nil/len(ParamTags[i])==0 if no tags are present for that param.
	ParamTags [][]string
}

func FuncMetadata(ins *asm.Instruction) *Func {
	fn, _ := ins.Metadata.Get(funcInfoMeta{}).(*Func)
	return fn
}

// WithFuncMetadata adds a btf.Func to the Metadata of asm.Instruction.
func WithFuncMetadata(ins asm.Instruction, fn *Func) asm.Instruction {
	ins.Metadata.Set(funcInfoMeta{}, fn)
	return ins
}

func (f *Func) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, f, f.Linkage, "proto=", f.Type)
}

func (f *Func) TypeName() string { return f.Name }

func (f *Func) copy() Type {
	cpy := *f
	cpy.Tags = copyTags(f.Tags)
	if f.ParamTags != nil { // preserve nil vs zero-len slice distinction
		ptCopy := make([][]string, len(f.ParamTags))
		for i, tags := range f.ParamTags {
			ptCopy[i] = copyTags(tags)
		}
		cpy.ParamTags = ptCopy
	}
	return &cpy
}

// FuncProto is a function declaration.
type FuncProto struct {
	Return Type
	Params []FuncParam
}

func (fp *FuncProto) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, fp, "args=", len(fp.Params), "return=", fp.Return)
}

func (fp *FuncProto) TypeName() string { return "" }

func (fp *FuncProto) copy() Type {
	cpy := *fp
	cpy.Params = make([]FuncParam, len(fp.Params))
	copy(cpy.Params, fp.Params)
	return &cpy
}

type FuncParam struct {
	Name string
	Type Type
}

// Var is a global variable.
type Var struct {
	Name    string
	Type    Type
	Linkage VarLinkage
	Tags    []string
}

func (v *Var) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, v, v.Linkage)
}

func (v *Var) TypeName() string { return v.Name }

func (v *Var) copy() Type {
	cpy := *v
	cpy.Tags = copyTags(v.Tags)
	return &cpy
}

// Datasec is a global program section containing data.
type Datasec struct {
	Name string
	Size uint32
	Vars []VarSecinfo
}

func (ds *Datasec) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, ds)
}

func (ds *Datasec) TypeName() string { return ds.Name }

func (ds *Datasec) size() uint32 { return ds.Size }

func (ds *Datasec) copy() Type {
	cpy := *ds
	cpy.Vars = make([]VarSecinfo, len(ds.Vars))
	copy(cpy.Vars, ds.Vars)
	return &cpy
}

// VarSecinfo describes variable in a Datasec.
//
// It is not a valid Type.
type VarSecinfo struct {
	// Var or Func.
	Type   Type
	Offset uint32
	Size   uint32
}

// Float is a float of a given length.
type Float struct {
	Name string

	// The size of the float in bytes.
	Size uint32
}

func (f *Float) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, f, "size=", f.Size*8)
}

func (f *Float) TypeName() string { return f.Name }
func (f *Float) size() uint32     { return f.Size }
func (f *Float) copy() Type {
	cpy := *f
	return &cpy
}

// declTag associates metadata with a declaration.
type declTag struct {
	Type  Type
	Value string
	// The index this tag refers to in the target type. For composite types,
	// a value of -1 indicates that the tag refers to the whole type. Otherwise
	// it indicates which member or argument the tag applies to.
	Index int
}

func (dt *declTag) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, dt, "type=", dt.Type, "value=", dt.Value, "index=", dt.Index)
}

func (dt *declTag) TypeName() string { return "" }
func (dt *declTag) copy() Type {
	cpy := *dt
	return &cpy
}

// TypeTag associates metadata with a pointer type. Tag types act as a custom
// modifier(const, restrict, volatile) for the target type. Unlike declTags,
// TypeTags are ordered so the order in which they are added matters.
//
// One of their uses is to mark pointers as `__kptr` meaning a pointer points
// to kernel memory. Adding a `__kptr` to pointers in map values allows you
// to store pointers to kernel memory in maps.
type TypeTag struct {
	Type  Type
	Value string
}

func (tt *TypeTag) Format(fs fmt.State, verb rune) {
	formatType(fs, verb, tt, "type=", tt.Type, "value=", tt.Value)
}

func (tt *TypeTag) TypeName() string { return "" }
func (tt *TypeTag) qualify() Type    { return tt.Type }
func (tt *TypeTag) copy() Type {
	cpy := *tt
	return &cpy
}

// cycle is a type which had to be elided since it exceeded maxTypeDepth.
type cycle struct {
	root Type
}

func (c *cycle) ID() TypeID                     { return math.MaxUint32 }
func (c *cycle) Format(fs fmt.State, verb rune) { formatType(fs, verb, c, "root=", c.root) }
func (c *cycle) TypeName() string               { return "" }
func (c *cycle) copy() Type {
	cpy := *c
	return &cpy
}

type sizer interface {
	size() uint32
}

var (
	_ sizer = (*Int)(nil)
	_ sizer = (*Pointer)(nil)
	_ sizer = (*Struct)(nil)
	_ sizer = (*Union)(nil)
	_ sizer = (*Enum)(nil)
	_ sizer = (*Datasec)(nil)
)

type qualifier interface {
	qualify() Type
}

var (
	_ qualifier = (*Const)(nil)
	_ qualifier = (*Restrict)(nil)
	_ qualifier = (*Volatile)(nil)
	_ qualifier = (*TypeTag)(nil)
)

var errUnsizedType = errors.New("type is unsized")

// Sizeof returns the size of a type in bytes.
//
// Returns an error if the size can't be computed.
func Sizeof(typ Type) (int, error) {
	var (
		n    = int64(1)
		elem int64
	)

	for i := 0; i < maxResolveDepth; i++ {
		switch v := typ.(type) {
		case *Array:
			if n > 0 && int64(v.Nelems) > math.MaxInt64/n {
				return 0, fmt.Errorf("type %s: overflow", typ)
			}

			// Arrays may be of zero length, which allows
			// n to be zero as well.
			n *= int64(v.Nelems)
			typ = v.Type
			continue

		case sizer:
			elem = int64(v.size())

		case *Typedef:
			typ = v.Type
			continue

		case qualifier:
			typ = v.qualify()
			continue

		default:
			return 0, fmt.Errorf("type %T: %w", typ, errUnsizedType)
		}

		if n > 0 && elem > math.MaxInt64/n {
			return 0, fmt.Errorf("type %s: overflow", typ)
		}

		size := n * elem
		if int64(int(size)) != size {
			return 0, fmt.Errorf("type %s: overflow", typ)
		}

		return int(size), nil
	}

	return 0, fmt.Errorf("type %s: exceeded type depth", typ)
}

// alignof returns the alignment of a type.
//
// Returns an error if the Type can't be aligned, like an integer with an uneven
// size. Currently only supports the subset of types necessary for bitfield
// relocations.
func alignof(typ Type) (int, error) {
	var n int

	switch t := UnderlyingType(typ).(type) {
	case *Enum:
		n = int(t.size())
	case *Int:
		n = int(t.Size)
	case *Array:
		return alignof(t.Type)
	default:
		return 0, fmt.Errorf("can't calculate alignment of %T", t)
	}

	if !internal.IsPow(n) {
		return 0, fmt.Errorf("alignment value %d is not a power of two", n)
	}

	return n, nil
}

// Copy a Type recursively.
//
// typ may form a cycle.
func Copy(typ Type) Type {
	return copyType(typ, nil, make(map[Type]Type), nil)
}

func copyType(typ Type, ids map[Type]TypeID, copies map[Type]Type, copiedIDs map[Type]TypeID) Type {
	if typ == nil {
		return nil
	}

	cpy, ok := copies[typ]
	if ok {
		// This has been copied previously, no need to continue.
		return cpy
	}

	cpy = typ.copy()
	copies[typ] = cpy

	if id, ok := ids[typ]; ok {
		copiedIDs[cpy] = id
	}

	children(cpy, func(child *Type) bool {
		*child = copyType(*child, ids, copies, copiedIDs)
		return true
	})

	return cpy
}

type typeDeque = internal.Deque[*Type]

// readAndInflateTypes reads the raw btf type info and turns it into a graph
// of Types connected via pointers.
//
// If base is provided, then the types are considered to be of a split BTF
// (e.g., a kernel module).
//
// Returns a slice of types indexed by TypeID. Since BTF ignores compilation
// units, multiple types may share the same name. A Type may form a cyclic graph
// by pointing at itself.
func readAndInflateTypes(r io.Reader, bo binary.ByteOrder, typeLen uint32, rawStrings *stringTable, base *Spec) ([]Type, error) {
	// because of the interleaving between types and struct members it is difficult to
	// precompute the numbers of raw types this will parse
	// this "guess" is a good first estimation
	sizeOfbtfType := uintptr(btfTypeLen)
	tyMaxCount := uintptr(typeLen) / sizeOfbtfType / 2
	types := make([]Type, 0, tyMaxCount)

	// Void is defined to always be type ID 0, and is thus omitted from BTF.
	types = append(types, (*Void)(nil))

	firstTypeID := TypeID(0)
	if base != nil {
		var err error
		firstTypeID, err = base.nextTypeID()
		if err != nil {
			return nil, err
		}

		// Split BTF doesn't contain Void.
		types = types[:0]
	}

	type fixupDef struct {
		id  TypeID
		typ *Type
	}

	var fixups []fixupDef
	fixup := func(id TypeID, typ *Type) {
		if id < firstTypeID {
			if baseType, err := base.TypeByID(id); err == nil {
				*typ = baseType
				return
			}
		}

		idx := int(id - firstTypeID)
		if idx < len(types) {
			// We've already inflated this type, fix it up immediately.
			*typ = types[idx]
			return
		}

		fixups = append(fixups, fixupDef{id, typ})
	}

	type bitfieldFixupDef struct {
		id TypeID
		m  *Member
	}

	var (
		legacyBitfields = make(map[TypeID][2]Bits) // offset, size
		bitfieldFixups  []bitfieldFixupDef
	)
	convertMembers := func(raw []btfMember, kindFlag bool) ([]Member, error) {
		// NB: The fixup below relies on pre-allocating this array to
		// work, since otherwise append might re-allocate members.
		members := make([]Member, 0, len(raw))
		for i, btfMember := range raw {
			name, err := rawStrings.Lookup(btfMember.NameOff)
			if err != nil {
				return nil, fmt.Errorf("can't get name for member %d: %w", i, err)
			}

			members = append(members, Member{
				Name:   name,
				Offset: Bits(btfMember.Offset),
			})

			m := &members[i]
			fixup(raw[i].Type, &m.Type)

			if kindFlag {
				m.BitfieldSize = Bits(btfMember.Offset >> 24)
				m.Offset &= 0xffffff
				// We ignore legacy bitfield definitions if the current composite
				// is a new-style bitfield. This is kind of safe since offset and
				// size on the type of the member must be zero if kindFlat is set
				// according to spec.
				continue
			}

			// This may be a legacy bitfield, try to fix it up.
			data, ok := legacyBitfields[raw[i].Type]
			if ok {
				// Bingo!
				m.Offset += data[0]
				m.BitfieldSize = data[1]
				continue
			}

			if m.Type != nil {
				// We couldn't find a legacy bitfield, but we know that the member's
				// type has already been inflated. Hence we know that it can't be
				// a legacy bitfield and there is nothing left to do.
				continue
			}

			// We don't have fixup data, and the type we're pointing
			// at hasn't been inflated yet. No choice but to defer
			// the fixup.
			bitfieldFixups = append(bitfieldFixups, bitfieldFixupDef{
				raw[i].Type,
				m,
			})
		}
		return members, nil
	}

	var (
		buf       = make([]byte, 1024)
		header    btfType
		bInt      btfInt
		bArr      btfArray
		bMembers  []btfMember
		bEnums    []btfEnum
		bParams   []btfParam
		bVariable btfVariable
		bSecInfos []btfVarSecinfo
		bDeclTag  btfDeclTag
		bEnums64  []btfEnum64
	)

	var declTags []*declTag
	for {
		var (
			id  = firstTypeID + TypeID(len(types))
			typ Type
		)

		if _, err := io.ReadFull(r, buf[:btfTypeLen]); err == io.EOF {
			break
		} else if err != nil {
			return nil, fmt.Errorf("can't read type info for id %v: %v", id, err)
		}

		if _, err := unmarshalBtfType(&header, buf[:btfTypeLen], bo); err != nil {
			return nil, fmt.Errorf("can't unmarshal type info for id %v: %v", id, err)
		}

		if id < firstTypeID {
			return nil, fmt.Errorf("no more type IDs")
		}

		name, err := rawStrings.Lookup(header.NameOff)
		if err != nil {
			return nil, fmt.Errorf("get name for type id %d: %w", id, err)
		}

		switch header.Kind() {
		case kindInt:
			size := header.Size()
			buf = buf[:btfIntLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfInt, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfInt(&bInt, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfInt, id: %d: %w", id, err)
			}
			if bInt.Offset() > 0 || bInt.Bits().Bytes() != size {
				legacyBitfields[id] = [2]Bits{bInt.Offset(), bInt.Bits()}
			}
			typ = &Int{name, header.Size(), bInt.Encoding()}

		case kindPointer:
			ptr := &Pointer{nil}
			fixup(header.Type(), &ptr.Target)
			typ = ptr

		case kindArray:
			buf = buf[:btfArrayLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfArray, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfArray(&bArr, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfArray, id: %d: %w", id, err)
			}

			arr := &Array{nil, nil, bArr.Nelems}
			fixup(bArr.IndexType, &arr.Index)
			fixup(bArr.Type, &arr.Type)
			typ = arr

		case kindStruct:
			vlen := header.Vlen()
			bMembers = slices.Grow(bMembers[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfMemberLen)[:vlen*btfMemberLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfMembers, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfMembers(bMembers, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfMembers, id: %d: %w", id, err)
			}

			members, err := convertMembers(bMembers, header.Bitfield())
			if err != nil {
				return nil, fmt.Errorf("struct %s (id %d): %w", name, id, err)
			}
			typ = &Struct{name, header.Size(), members, nil}

		case kindUnion:
			vlen := header.Vlen()
			bMembers = slices.Grow(bMembers[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfMemberLen)[:vlen*btfMemberLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfMembers, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfMembers(bMembers, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfMembers, id: %d: %w", id, err)
			}

			members, err := convertMembers(bMembers, header.Bitfield())
			if err != nil {
				return nil, fmt.Errorf("union %s (id %d): %w", name, id, err)
			}
			typ = &Union{name, header.Size(), members, nil}

		case kindEnum:
			vlen := header.Vlen()
			bEnums = slices.Grow(bEnums[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfEnumLen)[:vlen*btfEnumLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfEnums, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfEnums(bEnums, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfEnums, id: %d: %w", id, err)
			}

			vals := make([]EnumValue, 0, vlen)
			signed := header.Signed()
			for i, btfVal := range bEnums {
				name, err := rawStrings.Lookup(btfVal.NameOff)
				if err != nil {
					return nil, fmt.Errorf("get name for enum value %d: %s", i, err)
				}
				value := uint64(btfVal.Val)
				if signed {
					// Sign extend values to 64 bit.
					value = uint64(int32(btfVal.Val))
				}
				vals = append(vals, EnumValue{name, value})
			}
			typ = &Enum{name, header.Size(), signed, vals}

		case kindForward:
			typ = &Fwd{name, header.FwdKind()}

		case kindTypedef:
			typedef := &Typedef{name, nil, nil}
			fixup(header.Type(), &typedef.Type)
			typ = typedef

		case kindVolatile:
			volatile := &Volatile{nil}
			fixup(header.Type(), &volatile.Type)
			typ = volatile

		case kindConst:
			cnst := &Const{nil}
			fixup(header.Type(), &cnst.Type)
			typ = cnst

		case kindRestrict:
			restrict := &Restrict{nil}
			fixup(header.Type(), &restrict.Type)
			typ = restrict

		case kindFunc:
			fn := &Func{name, nil, header.Linkage(), nil, nil}
			fixup(header.Type(), &fn.Type)
			typ = fn

		case kindFuncProto:
			vlen := header.Vlen()
			bParams = slices.Grow(bParams[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfParamLen)[:vlen*btfParamLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfParams, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfParams(bParams, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfParams, id: %d: %w", id, err)
			}

			params := make([]FuncParam, 0, vlen)
			for i, param := range bParams {
				name, err := rawStrings.Lookup(param.NameOff)
				if err != nil {
					return nil, fmt.Errorf("get name for func proto parameter %d: %s", i, err)
				}
				params = append(params, FuncParam{
					Name: name,
				})
			}
			for i := range params {
				fixup(bParams[i].Type, &params[i].Type)
			}

			fp := &FuncProto{nil, params}
			fixup(header.Type(), &fp.Return)
			typ = fp

		case kindVar:
			buf = buf[:btfVariableLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfVariable, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfVariable(&bVariable, buf, bo); err != nil {
				return nil, fmt.Errorf("can't read btfVariable, id: %d: %w", id, err)
			}

			v := &Var{name, nil, VarLinkage(bVariable.Linkage), nil}
			fixup(header.Type(), &v.Type)
			typ = v

		case kindDatasec:
			vlen := header.Vlen()
			bSecInfos = slices.Grow(bSecInfos[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfVarSecinfoLen)[:vlen*btfVarSecinfoLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfVarSecInfos, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfVarSecInfos(bSecInfos, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfVarSecInfos, id: %d: %w", id, err)
			}

			vars := make([]VarSecinfo, 0, vlen)
			for _, btfVar := range bSecInfos {
				vars = append(vars, VarSecinfo{
					Offset: btfVar.Offset,
					Size:   btfVar.Size,
				})
			}
			for i := range vars {
				fixup(bSecInfos[i].Type, &vars[i].Type)
			}
			typ = &Datasec{name, header.Size(), vars}

		case kindFloat:
			typ = &Float{name, header.Size()}

		case kindDeclTag:
			buf = buf[:btfDeclTagLen]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfDeclTag, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfDeclTag(&bDeclTag, buf, bo); err != nil {
				return nil, fmt.Errorf("can't read btfDeclTag, id: %d: %w", id, err)
			}

			btfIndex := bDeclTag.ComponentIdx
			if uint64(btfIndex) > math.MaxInt {
				return nil, fmt.Errorf("type id %d: index exceeds int", id)
			}

			dt := &declTag{nil, name, int(int32(btfIndex))}
			fixup(header.Type(), &dt.Type)
			typ = dt

			declTags = append(declTags, dt)

		case kindTypeTag:
			tt := &TypeTag{nil, name}
			fixup(header.Type(), &tt.Type)
			typ = tt

		case kindEnum64:
			vlen := header.Vlen()
			bEnums64 = slices.Grow(bEnums64[:0], vlen)[:vlen]
			buf = slices.Grow(buf[:0], vlen*btfEnum64Len)[:vlen*btfEnum64Len]
			if _, err := io.ReadFull(r, buf); err != nil {
				return nil, fmt.Errorf("can't read btfEnum64s, id: %d: %w", id, err)
			}
			if _, err := unmarshalBtfEnums64(bEnums64, buf, bo); err != nil {
				return nil, fmt.Errorf("can't unmarshal btfEnum64s, id: %d: %w", id, err)
			}

			vals := make([]EnumValue, 0, vlen)
			for i, btfVal := range bEnums64 {
				name, err := rawStrings.Lookup(btfVal.NameOff)
				if err != nil {
					return nil, fmt.Errorf("get name for enum64 value %d: %s", i, err)
				}
				value := (uint64(btfVal.ValHi32) << 32) | uint64(btfVal.ValLo32)
				vals = append(vals, EnumValue{name, value})
			}
			typ = &Enum{name, header.Size(), header.Signed(), vals}

		default:
			return nil, fmt.Errorf("type id %d: unknown kind: %v", id, header.Kind())
		}

		types = append(types, typ)
	}

	for _, fixup := range fixups {
		if fixup.id < firstTypeID {
			return nil, fmt.Errorf("fixup for base type id %d is not expected", fixup.id)
		}

		idx := int(fixup.id - firstTypeID)
		if idx >= len(types) {
			return nil, fmt.Errorf("reference to invalid type id: %d", fixup.id)
		}

		*fixup.typ = types[idx]
	}

	for _, bitfieldFixup := range bitfieldFixups {
		if bitfieldFixup.id < firstTypeID {
			return nil, fmt.Errorf("bitfield fixup from split to base types is not expected")
		}

		data, ok := legacyBitfields[bitfieldFixup.id]
		if ok {
			// This is indeed a legacy bitfield, fix it up.
			bitfieldFixup.m.Offset += data[0]
			bitfieldFixup.m.BitfieldSize = data[1]
		}
	}

	for _, dt := range declTags {
		switch t := dt.Type.(type) {
		case *Var:
			if dt.Index != -1 {
				return nil, fmt.Errorf("type %s: component idx %d is not -1", dt, dt.Index)
			}
			t.Tags = append(t.Tags, dt.Value)

		case *Typedef:
			if dt.Index != -1 {
				return nil, fmt.Errorf("type %s: component idx %d is not -1", dt, dt.Index)
			}
			t.Tags = append(t.Tags, dt.Value)

		case composite:
			if dt.Index >= 0 {
				members := t.members()
				if dt.Index >= len(members) {
					return nil, fmt.Errorf("type %s: component idx %d exceeds members of %s", dt, dt.Index, t)
				}

				members[dt.Index].Tags = append(members[dt.Index].Tags, dt.Value)
				continue
			}

			if dt.Index == -1 {
				switch t2 := t.(type) {
				case *Struct:
					t2.Tags = append(t2.Tags, dt.Value)
				case *Union:
					t2.Tags = append(t2.Tags, dt.Value)
				}

				continue
			}

			return nil, fmt.Errorf("type %s: decl tag for type %s has invalid component idx", dt, t)

		case *Func:
			fp, ok := t.Type.(*FuncProto)
			if !ok {
				return nil, fmt.Errorf("type %s: %s is not a FuncProto", dt, t.Type)
			}

			// Ensure the number of argument tag lists equals the number of arguments
			if len(t.ParamTags) == 0 {
				t.ParamTags = make([][]string, len(fp.Params))
			}

			if dt.Index >= 0 {
				if dt.Index >= len(fp.Params) {
					return nil, fmt.Errorf("type %s: component idx %d exceeds params of %s", dt, dt.Index, t)
				}

				t.ParamTags[dt.Index] = append(t.ParamTags[dt.Index], dt.Value)
				continue
			}

			if dt.Index == -1 {
				t.Tags = append(t.Tags, dt.Value)
				continue
			}

			return nil, fmt.Errorf("type %s: decl tag for type %s has invalid component idx", dt, t)

		default:
			return nil, fmt.Errorf("type %s: decl tag for type %s is not supported", dt, t)
		}
	}

	return types, nil
}

// essentialName represents the name of a BTF type stripped of any flavor
// suffixes after a ___ delimiter.
type essentialName string

// newEssentialName returns name without a ___ suffix.
//
// CO-RE has the concept of 'struct flavors', which are used to deal with
// changes in kernel data structures. Anything after three underscores
// in a type name is ignored for the purpose of finding a candidate type
// in the kernel's BTF.
func newEssentialName(name string) essentialName {
	if name == "" {
		return ""
	}
	lastIdx := strings.LastIndex(name, "___")
	if lastIdx > 0 {
		return essentialName(name[:lastIdx])
	}
	return essentialName(name)
}

// UnderlyingType skips qualifiers and Typedefs.
func UnderlyingType(typ Type) Type {
	result := typ
	for depth := 0; depth <= maxResolveDepth; depth++ {
		switch v := (result).(type) {
		case qualifier:
			result = v.qualify()
		case *Typedef:
			result = v.Type
		default:
			return result
		}
	}
	return &cycle{typ}
}

// QualifiedType returns the type with all qualifiers removed.
func QualifiedType(typ Type) Type {
	result := typ
	for depth := 0; depth <= maxResolveDepth; depth++ {
		switch v := (result).(type) {
		case qualifier:
			result = v.qualify()
		default:
			return result
		}
	}
	return &cycle{typ}
}

// As returns typ if is of type T. Otherwise it peels qualifiers and Typedefs
// until it finds a T.
//
// Returns the zero value and false if there is no T or if the type is nested
// too deeply.
func As[T Type](typ Type) (T, bool) {
	// NB: We can't make this function return (*T) since then
	// we can't assert that a type matches an interface which
	// embeds Type: as[composite](T).
	for depth := 0; depth <= maxResolveDepth; depth++ {
		switch v := (typ).(type) {
		case T:
			return v, true
		case qualifier:
			typ = v.qualify()
		case *Typedef:
			typ = v.Type
		default:
			goto notFound
		}
	}
notFound:
	var zero T
	return zero, false
}

type formatState struct {
	fmt.State
	depth int
}

// formattableType is a subset of Type, to ease unit testing of formatType.
type formattableType interface {
	fmt.Formatter
	TypeName() string
}

// formatType formats a type in a canonical form.
//
// Handles cyclical types by only printing cycles up to a certain depth. Elements
// in extra are separated by spaces unless the preceding element is a string
// ending in '='.
func formatType(f fmt.State, verb rune, t formattableType, extra ...interface{}) {
	if verb != 'v' && verb != 's' {
		fmt.Fprintf(f, "{UNRECOGNIZED: %c}", verb)
		return
	}

	_, _ = io.WriteString(f, internal.GoTypeName(t))

	if name := t.TypeName(); name != "" {
		// Output BTF type name if present.
		fmt.Fprintf(f, ":%q", name)
	}

	if f.Flag('+') {
		// Output address if requested.
		fmt.Fprintf(f, ":%#p", t)
	}

	if verb == 's' {
		// %s omits details.
		return
	}

	var depth int
	if ps, ok := f.(*formatState); ok {
		depth = ps.depth
		f = ps.State
	}

	maxDepth, ok := f.Width()
	if !ok {
		maxDepth = 0
	}

	if depth > maxDepth {
		// We've reached the maximum depth. This avoids infinite recursion even
		// for cyclical types.
		return
	}

	if len(extra) == 0 {
		return
	}

	wantSpace := false
	_, _ = io.WriteString(f, "[")
	for _, arg := range extra {
		if wantSpace {
			_, _ = io.WriteString(f, " ")
		}

		switch v := arg.(type) {
		case string:
			_, _ = io.WriteString(f, v)
			wantSpace = len(v) > 0 && v[len(v)-1] != '='
			continue

		case formattableType:
			v.Format(&formatState{f, depth + 1}, verb)

		default:
			fmt.Fprint(f, arg)
		}

		wantSpace = true
	}
	_, _ = io.WriteString(f, "]")
}