1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
|
package btf
import (
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"slices"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/sys"
)
// Mirrors MAX_RESOLVE_DEPTH in libbpf.
// https://github.com/libbpf/libbpf/blob/e26b84dc330c9644c07428c271ab491b0f01f4e1/src/btf.c#L761
const maxResolveDepth = 32
// TypeID identifies a type in a BTF section.
type TypeID = sys.TypeID
// Type represents a type described by BTF.
//
// Identity of Type follows the [Go specification]: two Types are considered
// equal if they have the same concrete type and the same dynamic value, aka
// they point at the same location in memory. This means that the following
// Types are considered distinct even though they have the same "shape".
//
// a := &Int{Size: 1}
// b := &Int{Size: 1}
// a != b
//
// [Go specification]: https://go.dev/ref/spec#Comparison_operators
type Type interface {
// Type can be formatted using the %s and %v verbs. %s outputs only the
// identity of the type, without any detail. %v outputs additional detail.
//
// Use the '+' flag to include the address of the type.
//
// Use the width to specify how many levels of detail to output, for example
// %1v will output detail for the root type and a short description of its
// children. %2v would output details of the root type and its children
// as well as a short description of the grandchildren.
fmt.Formatter
// Name of the type, empty for anonymous types and types that cannot
// carry a name, like Void and Pointer.
TypeName() string
// Make a copy of the type, without copying Type members.
copy() Type
// New implementations must update walkType.
}
var (
_ Type = (*Int)(nil)
_ Type = (*Struct)(nil)
_ Type = (*Union)(nil)
_ Type = (*Enum)(nil)
_ Type = (*Fwd)(nil)
_ Type = (*Func)(nil)
_ Type = (*Typedef)(nil)
_ Type = (*Var)(nil)
_ Type = (*Datasec)(nil)
_ Type = (*Float)(nil)
_ Type = (*declTag)(nil)
_ Type = (*TypeTag)(nil)
_ Type = (*cycle)(nil)
)
// Void is the unit type of BTF.
type Void struct{}
func (v *Void) Format(fs fmt.State, verb rune) { formatType(fs, verb, v) }
func (v *Void) TypeName() string { return "" }
func (v *Void) size() uint32 { return 0 }
func (v *Void) copy() Type { return (*Void)(nil) }
type IntEncoding byte
// Valid IntEncodings.
//
// These may look like they are flags, but they aren't.
const (
Unsigned IntEncoding = 0
Signed IntEncoding = 1
Char IntEncoding = 2
Bool IntEncoding = 4
)
func (ie IntEncoding) String() string {
switch ie {
case Char:
// NB: There is no way to determine signedness for char.
return "char"
case Bool:
return "bool"
case Signed:
return "signed"
case Unsigned:
return "unsigned"
default:
return fmt.Sprintf("IntEncoding(%d)", byte(ie))
}
}
// Int is an integer of a given length.
//
// See https://www.kernel.org/doc/html/latest/bpf/btf.html#btf-kind-int
type Int struct {
Name string
// The size of the integer in bytes.
Size uint32
Encoding IntEncoding
}
func (i *Int) Format(fs fmt.State, verb rune) {
formatType(fs, verb, i, i.Encoding, "size=", i.Size)
}
func (i *Int) TypeName() string { return i.Name }
func (i *Int) size() uint32 { return i.Size }
func (i *Int) copy() Type {
cpy := *i
return &cpy
}
// Pointer is a pointer to another type.
type Pointer struct {
Target Type
}
func (p *Pointer) Format(fs fmt.State, verb rune) {
formatType(fs, verb, p, "target=", p.Target)
}
func (p *Pointer) TypeName() string { return "" }
func (p *Pointer) size() uint32 { return 8 }
func (p *Pointer) copy() Type {
cpy := *p
return &cpy
}
// Array is an array with a fixed number of elements.
type Array struct {
Index Type
Type Type
Nelems uint32
}
func (arr *Array) Format(fs fmt.State, verb rune) {
formatType(fs, verb, arr, "index=", arr.Index, "type=", arr.Type, "n=", arr.Nelems)
}
func (arr *Array) TypeName() string { return "" }
func (arr *Array) copy() Type {
cpy := *arr
return &cpy
}
// Struct is a compound type of consecutive members.
type Struct struct {
Name string
// The size of the struct including padding, in bytes
Size uint32
Members []Member
Tags []string
}
func (s *Struct) Format(fs fmt.State, verb rune) {
formatType(fs, verb, s, "fields=", len(s.Members))
}
func (s *Struct) TypeName() string { return s.Name }
func (s *Struct) size() uint32 { return s.Size }
func (s *Struct) copy() Type {
cpy := *s
cpy.Members = copyMembers(s.Members)
cpy.Tags = copyTags(cpy.Tags)
return &cpy
}
func (s *Struct) members() []Member {
return s.Members
}
// Union is a compound type where members occupy the same memory.
type Union struct {
Name string
// The size of the union including padding, in bytes.
Size uint32
Members []Member
Tags []string
}
func (u *Union) Format(fs fmt.State, verb rune) {
formatType(fs, verb, u, "fields=", len(u.Members))
}
func (u *Union) TypeName() string { return u.Name }
func (u *Union) size() uint32 { return u.Size }
func (u *Union) copy() Type {
cpy := *u
cpy.Members = copyMembers(u.Members)
cpy.Tags = copyTags(cpy.Tags)
return &cpy
}
func (u *Union) members() []Member {
return u.Members
}
func copyMembers(orig []Member) []Member {
cpy := make([]Member, len(orig))
copy(cpy, orig)
for i, member := range cpy {
cpy[i].Tags = copyTags(member.Tags)
}
return cpy
}
func copyTags(orig []string) []string {
if orig == nil { // preserve nil vs zero-len slice distinction
return nil
}
cpy := make([]string, len(orig))
copy(cpy, orig)
return cpy
}
type composite interface {
Type
members() []Member
}
var (
_ composite = (*Struct)(nil)
_ composite = (*Union)(nil)
)
// A value in bits.
type Bits uint32
// Bytes converts a bit value into bytes.
func (b Bits) Bytes() uint32 {
return uint32(b / 8)
}
// Member is part of a Struct or Union.
//
// It is not a valid Type.
type Member struct {
Name string
Type Type
Offset Bits
BitfieldSize Bits
Tags []string
}
// Enum lists possible values.
type Enum struct {
Name string
// Size of the enum value in bytes.
Size uint32
// True if the values should be interpreted as signed integers.
Signed bool
Values []EnumValue
}
func (e *Enum) Format(fs fmt.State, verb rune) {
formatType(fs, verb, e, "size=", e.Size, "values=", len(e.Values))
}
func (e *Enum) TypeName() string { return e.Name }
// EnumValue is part of an Enum
//
// Is is not a valid Type
type EnumValue struct {
Name string
Value uint64
}
func (e *Enum) size() uint32 { return e.Size }
func (e *Enum) copy() Type {
cpy := *e
cpy.Values = make([]EnumValue, len(e.Values))
copy(cpy.Values, e.Values)
return &cpy
}
// FwdKind is the type of forward declaration.
type FwdKind int
// Valid types of forward declaration.
const (
FwdStruct FwdKind = iota
FwdUnion
)
func (fk FwdKind) String() string {
switch fk {
case FwdStruct:
return "struct"
case FwdUnion:
return "union"
default:
return fmt.Sprintf("%T(%d)", fk, int(fk))
}
}
// Fwd is a forward declaration of a Type.
type Fwd struct {
Name string
Kind FwdKind
}
func (f *Fwd) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, f.Kind)
}
func (f *Fwd) TypeName() string { return f.Name }
func (f *Fwd) copy() Type {
cpy := *f
return &cpy
}
func (f *Fwd) matches(typ Type) bool {
if _, ok := As[*Struct](typ); ok && f.Kind == FwdStruct {
return true
}
if _, ok := As[*Union](typ); ok && f.Kind == FwdUnion {
return true
}
return false
}
// Typedef is an alias of a Type.
type Typedef struct {
Name string
Type Type
Tags []string
}
func (td *Typedef) Format(fs fmt.State, verb rune) {
formatType(fs, verb, td, td.Type)
}
func (td *Typedef) TypeName() string { return td.Name }
func (td *Typedef) copy() Type {
cpy := *td
cpy.Tags = copyTags(td.Tags)
return &cpy
}
// Volatile is a qualifier.
type Volatile struct {
Type Type
}
func (v *Volatile) Format(fs fmt.State, verb rune) {
formatType(fs, verb, v, v.Type)
}
func (v *Volatile) TypeName() string { return "" }
func (v *Volatile) qualify() Type { return v.Type }
func (v *Volatile) copy() Type {
cpy := *v
return &cpy
}
// Const is a qualifier.
type Const struct {
Type Type
}
func (c *Const) Format(fs fmt.State, verb rune) {
formatType(fs, verb, c, c.Type)
}
func (c *Const) TypeName() string { return "" }
func (c *Const) qualify() Type { return c.Type }
func (c *Const) copy() Type {
cpy := *c
return &cpy
}
// Restrict is a qualifier.
type Restrict struct {
Type Type
}
func (r *Restrict) Format(fs fmt.State, verb rune) {
formatType(fs, verb, r, r.Type)
}
func (r *Restrict) TypeName() string { return "" }
func (r *Restrict) qualify() Type { return r.Type }
func (r *Restrict) copy() Type {
cpy := *r
return &cpy
}
// Func is a function definition.
type Func struct {
Name string
Type Type
Linkage FuncLinkage
Tags []string
// ParamTags holds a list of tags for each parameter of the FuncProto to which `Type` points.
// If no tags are present for any param, the outer slice will be nil/len(ParamTags)==0.
// If at least 1 param has a tag, the outer slice will have the same length as the number of params.
// The inner slice contains the tags and may be nil/len(ParamTags[i])==0 if no tags are present for that param.
ParamTags [][]string
}
func FuncMetadata(ins *asm.Instruction) *Func {
fn, _ := ins.Metadata.Get(funcInfoMeta{}).(*Func)
return fn
}
// WithFuncMetadata adds a btf.Func to the Metadata of asm.Instruction.
func WithFuncMetadata(ins asm.Instruction, fn *Func) asm.Instruction {
ins.Metadata.Set(funcInfoMeta{}, fn)
return ins
}
func (f *Func) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, f.Linkage, "proto=", f.Type)
}
func (f *Func) TypeName() string { return f.Name }
func (f *Func) copy() Type {
cpy := *f
cpy.Tags = copyTags(f.Tags)
if f.ParamTags != nil { // preserve nil vs zero-len slice distinction
ptCopy := make([][]string, len(f.ParamTags))
for i, tags := range f.ParamTags {
ptCopy[i] = copyTags(tags)
}
cpy.ParamTags = ptCopy
}
return &cpy
}
// FuncProto is a function declaration.
type FuncProto struct {
Return Type
Params []FuncParam
}
func (fp *FuncProto) Format(fs fmt.State, verb rune) {
formatType(fs, verb, fp, "args=", len(fp.Params), "return=", fp.Return)
}
func (fp *FuncProto) TypeName() string { return "" }
func (fp *FuncProto) copy() Type {
cpy := *fp
cpy.Params = make([]FuncParam, len(fp.Params))
copy(cpy.Params, fp.Params)
return &cpy
}
type FuncParam struct {
Name string
Type Type
}
// Var is a global variable.
type Var struct {
Name string
Type Type
Linkage VarLinkage
Tags []string
}
func (v *Var) Format(fs fmt.State, verb rune) {
formatType(fs, verb, v, v.Linkage)
}
func (v *Var) TypeName() string { return v.Name }
func (v *Var) copy() Type {
cpy := *v
cpy.Tags = copyTags(v.Tags)
return &cpy
}
// Datasec is a global program section containing data.
type Datasec struct {
Name string
Size uint32
Vars []VarSecinfo
}
func (ds *Datasec) Format(fs fmt.State, verb rune) {
formatType(fs, verb, ds)
}
func (ds *Datasec) TypeName() string { return ds.Name }
func (ds *Datasec) size() uint32 { return ds.Size }
func (ds *Datasec) copy() Type {
cpy := *ds
cpy.Vars = make([]VarSecinfo, len(ds.Vars))
copy(cpy.Vars, ds.Vars)
return &cpy
}
// VarSecinfo describes variable in a Datasec.
//
// It is not a valid Type.
type VarSecinfo struct {
// Var or Func.
Type Type
Offset uint32
Size uint32
}
// Float is a float of a given length.
type Float struct {
Name string
// The size of the float in bytes.
Size uint32
}
func (f *Float) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, "size=", f.Size*8)
}
func (f *Float) TypeName() string { return f.Name }
func (f *Float) size() uint32 { return f.Size }
func (f *Float) copy() Type {
cpy := *f
return &cpy
}
// declTag associates metadata with a declaration.
type declTag struct {
Type Type
Value string
// The index this tag refers to in the target type. For composite types,
// a value of -1 indicates that the tag refers to the whole type. Otherwise
// it indicates which member or argument the tag applies to.
Index int
}
func (dt *declTag) Format(fs fmt.State, verb rune) {
formatType(fs, verb, dt, "type=", dt.Type, "value=", dt.Value, "index=", dt.Index)
}
func (dt *declTag) TypeName() string { return "" }
func (dt *declTag) copy() Type {
cpy := *dt
return &cpy
}
// TypeTag associates metadata with a pointer type. Tag types act as a custom
// modifier(const, restrict, volatile) for the target type. Unlike declTags,
// TypeTags are ordered so the order in which they are added matters.
//
// One of their uses is to mark pointers as `__kptr` meaning a pointer points
// to kernel memory. Adding a `__kptr` to pointers in map values allows you
// to store pointers to kernel memory in maps.
type TypeTag struct {
Type Type
Value string
}
func (tt *TypeTag) Format(fs fmt.State, verb rune) {
formatType(fs, verb, tt, "type=", tt.Type, "value=", tt.Value)
}
func (tt *TypeTag) TypeName() string { return "" }
func (tt *TypeTag) qualify() Type { return tt.Type }
func (tt *TypeTag) copy() Type {
cpy := *tt
return &cpy
}
// cycle is a type which had to be elided since it exceeded maxTypeDepth.
type cycle struct {
root Type
}
func (c *cycle) ID() TypeID { return math.MaxUint32 }
func (c *cycle) Format(fs fmt.State, verb rune) { formatType(fs, verb, c, "root=", c.root) }
func (c *cycle) TypeName() string { return "" }
func (c *cycle) copy() Type {
cpy := *c
return &cpy
}
type sizer interface {
size() uint32
}
var (
_ sizer = (*Int)(nil)
_ sizer = (*Pointer)(nil)
_ sizer = (*Struct)(nil)
_ sizer = (*Union)(nil)
_ sizer = (*Enum)(nil)
_ sizer = (*Datasec)(nil)
)
type qualifier interface {
qualify() Type
}
var (
_ qualifier = (*Const)(nil)
_ qualifier = (*Restrict)(nil)
_ qualifier = (*Volatile)(nil)
_ qualifier = (*TypeTag)(nil)
)
var errUnsizedType = errors.New("type is unsized")
// Sizeof returns the size of a type in bytes.
//
// Returns an error if the size can't be computed.
func Sizeof(typ Type) (int, error) {
var (
n = int64(1)
elem int64
)
for i := 0; i < maxResolveDepth; i++ {
switch v := typ.(type) {
case *Array:
if n > 0 && int64(v.Nelems) > math.MaxInt64/n {
return 0, fmt.Errorf("type %s: overflow", typ)
}
// Arrays may be of zero length, which allows
// n to be zero as well.
n *= int64(v.Nelems)
typ = v.Type
continue
case sizer:
elem = int64(v.size())
case *Typedef:
typ = v.Type
continue
case qualifier:
typ = v.qualify()
continue
default:
return 0, fmt.Errorf("type %T: %w", typ, errUnsizedType)
}
if n > 0 && elem > math.MaxInt64/n {
return 0, fmt.Errorf("type %s: overflow", typ)
}
size := n * elem
if int64(int(size)) != size {
return 0, fmt.Errorf("type %s: overflow", typ)
}
return int(size), nil
}
return 0, fmt.Errorf("type %s: exceeded type depth", typ)
}
// alignof returns the alignment of a type.
//
// Returns an error if the Type can't be aligned, like an integer with an uneven
// size. Currently only supports the subset of types necessary for bitfield
// relocations.
func alignof(typ Type) (int, error) {
var n int
switch t := UnderlyingType(typ).(type) {
case *Enum:
n = int(t.size())
case *Int:
n = int(t.Size)
case *Array:
return alignof(t.Type)
default:
return 0, fmt.Errorf("can't calculate alignment of %T", t)
}
if !internal.IsPow(n) {
return 0, fmt.Errorf("alignment value %d is not a power of two", n)
}
return n, nil
}
// Copy a Type recursively.
//
// typ may form a cycle.
func Copy(typ Type) Type {
return copyType(typ, nil, make(map[Type]Type), nil)
}
func copyType(typ Type, ids map[Type]TypeID, copies map[Type]Type, copiedIDs map[Type]TypeID) Type {
if typ == nil {
return nil
}
cpy, ok := copies[typ]
if ok {
// This has been copied previously, no need to continue.
return cpy
}
cpy = typ.copy()
copies[typ] = cpy
if id, ok := ids[typ]; ok {
copiedIDs[cpy] = id
}
children(cpy, func(child *Type) bool {
*child = copyType(*child, ids, copies, copiedIDs)
return true
})
return cpy
}
type typeDeque = internal.Deque[*Type]
// readAndInflateTypes reads the raw btf type info and turns it into a graph
// of Types connected via pointers.
//
// If base is provided, then the types are considered to be of a split BTF
// (e.g., a kernel module).
//
// Returns a slice of types indexed by TypeID. Since BTF ignores compilation
// units, multiple types may share the same name. A Type may form a cyclic graph
// by pointing at itself.
func readAndInflateTypes(r io.Reader, bo binary.ByteOrder, typeLen uint32, rawStrings *stringTable, base *Spec) ([]Type, error) {
// because of the interleaving between types and struct members it is difficult to
// precompute the numbers of raw types this will parse
// this "guess" is a good first estimation
sizeOfbtfType := uintptr(btfTypeLen)
tyMaxCount := uintptr(typeLen) / sizeOfbtfType / 2
types := make([]Type, 0, tyMaxCount)
// Void is defined to always be type ID 0, and is thus omitted from BTF.
types = append(types, (*Void)(nil))
firstTypeID := TypeID(0)
if base != nil {
var err error
firstTypeID, err = base.nextTypeID()
if err != nil {
return nil, err
}
// Split BTF doesn't contain Void.
types = types[:0]
}
type fixupDef struct {
id TypeID
typ *Type
}
var fixups []fixupDef
fixup := func(id TypeID, typ *Type) {
if id < firstTypeID {
if baseType, err := base.TypeByID(id); err == nil {
*typ = baseType
return
}
}
idx := int(id - firstTypeID)
if idx < len(types) {
// We've already inflated this type, fix it up immediately.
*typ = types[idx]
return
}
fixups = append(fixups, fixupDef{id, typ})
}
type bitfieldFixupDef struct {
id TypeID
m *Member
}
var (
legacyBitfields = make(map[TypeID][2]Bits) // offset, size
bitfieldFixups []bitfieldFixupDef
)
convertMembers := func(raw []btfMember, kindFlag bool) ([]Member, error) {
// NB: The fixup below relies on pre-allocating this array to
// work, since otherwise append might re-allocate members.
members := make([]Member, 0, len(raw))
for i, btfMember := range raw {
name, err := rawStrings.Lookup(btfMember.NameOff)
if err != nil {
return nil, fmt.Errorf("can't get name for member %d: %w", i, err)
}
members = append(members, Member{
Name: name,
Offset: Bits(btfMember.Offset),
})
m := &members[i]
fixup(raw[i].Type, &m.Type)
if kindFlag {
m.BitfieldSize = Bits(btfMember.Offset >> 24)
m.Offset &= 0xffffff
// We ignore legacy bitfield definitions if the current composite
// is a new-style bitfield. This is kind of safe since offset and
// size on the type of the member must be zero if kindFlat is set
// according to spec.
continue
}
// This may be a legacy bitfield, try to fix it up.
data, ok := legacyBitfields[raw[i].Type]
if ok {
// Bingo!
m.Offset += data[0]
m.BitfieldSize = data[1]
continue
}
if m.Type != nil {
// We couldn't find a legacy bitfield, but we know that the member's
// type has already been inflated. Hence we know that it can't be
// a legacy bitfield and there is nothing left to do.
continue
}
// We don't have fixup data, and the type we're pointing
// at hasn't been inflated yet. No choice but to defer
// the fixup.
bitfieldFixups = append(bitfieldFixups, bitfieldFixupDef{
raw[i].Type,
m,
})
}
return members, nil
}
var (
buf = make([]byte, 1024)
header btfType
bInt btfInt
bArr btfArray
bMembers []btfMember
bEnums []btfEnum
bParams []btfParam
bVariable btfVariable
bSecInfos []btfVarSecinfo
bDeclTag btfDeclTag
bEnums64 []btfEnum64
)
var declTags []*declTag
for {
var (
id = firstTypeID + TypeID(len(types))
typ Type
)
if _, err := io.ReadFull(r, buf[:btfTypeLen]); err == io.EOF {
break
} else if err != nil {
return nil, fmt.Errorf("can't read type info for id %v: %v", id, err)
}
if _, err := unmarshalBtfType(&header, buf[:btfTypeLen], bo); err != nil {
return nil, fmt.Errorf("can't unmarshal type info for id %v: %v", id, err)
}
if id < firstTypeID {
return nil, fmt.Errorf("no more type IDs")
}
name, err := rawStrings.Lookup(header.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for type id %d: %w", id, err)
}
switch header.Kind() {
case kindInt:
size := header.Size()
buf = buf[:btfIntLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfInt, id: %d: %w", id, err)
}
if _, err := unmarshalBtfInt(&bInt, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfInt, id: %d: %w", id, err)
}
if bInt.Offset() > 0 || bInt.Bits().Bytes() != size {
legacyBitfields[id] = [2]Bits{bInt.Offset(), bInt.Bits()}
}
typ = &Int{name, header.Size(), bInt.Encoding()}
case kindPointer:
ptr := &Pointer{nil}
fixup(header.Type(), &ptr.Target)
typ = ptr
case kindArray:
buf = buf[:btfArrayLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfArray, id: %d: %w", id, err)
}
if _, err := unmarshalBtfArray(&bArr, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfArray, id: %d: %w", id, err)
}
arr := &Array{nil, nil, bArr.Nelems}
fixup(bArr.IndexType, &arr.Index)
fixup(bArr.Type, &arr.Type)
typ = arr
case kindStruct:
vlen := header.Vlen()
bMembers = slices.Grow(bMembers[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfMemberLen)[:vlen*btfMemberLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfMembers, id: %d: %w", id, err)
}
if _, err := unmarshalBtfMembers(bMembers, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfMembers, id: %d: %w", id, err)
}
members, err := convertMembers(bMembers, header.Bitfield())
if err != nil {
return nil, fmt.Errorf("struct %s (id %d): %w", name, id, err)
}
typ = &Struct{name, header.Size(), members, nil}
case kindUnion:
vlen := header.Vlen()
bMembers = slices.Grow(bMembers[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfMemberLen)[:vlen*btfMemberLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfMembers, id: %d: %w", id, err)
}
if _, err := unmarshalBtfMembers(bMembers, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfMembers, id: %d: %w", id, err)
}
members, err := convertMembers(bMembers, header.Bitfield())
if err != nil {
return nil, fmt.Errorf("union %s (id %d): %w", name, id, err)
}
typ = &Union{name, header.Size(), members, nil}
case kindEnum:
vlen := header.Vlen()
bEnums = slices.Grow(bEnums[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfEnumLen)[:vlen*btfEnumLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfEnums, id: %d: %w", id, err)
}
if _, err := unmarshalBtfEnums(bEnums, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfEnums, id: %d: %w", id, err)
}
vals := make([]EnumValue, 0, vlen)
signed := header.Signed()
for i, btfVal := range bEnums {
name, err := rawStrings.Lookup(btfVal.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for enum value %d: %s", i, err)
}
value := uint64(btfVal.Val)
if signed {
// Sign extend values to 64 bit.
value = uint64(int32(btfVal.Val))
}
vals = append(vals, EnumValue{name, value})
}
typ = &Enum{name, header.Size(), signed, vals}
case kindForward:
typ = &Fwd{name, header.FwdKind()}
case kindTypedef:
typedef := &Typedef{name, nil, nil}
fixup(header.Type(), &typedef.Type)
typ = typedef
case kindVolatile:
volatile := &Volatile{nil}
fixup(header.Type(), &volatile.Type)
typ = volatile
case kindConst:
cnst := &Const{nil}
fixup(header.Type(), &cnst.Type)
typ = cnst
case kindRestrict:
restrict := &Restrict{nil}
fixup(header.Type(), &restrict.Type)
typ = restrict
case kindFunc:
fn := &Func{name, nil, header.Linkage(), nil, nil}
fixup(header.Type(), &fn.Type)
typ = fn
case kindFuncProto:
vlen := header.Vlen()
bParams = slices.Grow(bParams[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfParamLen)[:vlen*btfParamLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfParams, id: %d: %w", id, err)
}
if _, err := unmarshalBtfParams(bParams, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfParams, id: %d: %w", id, err)
}
params := make([]FuncParam, 0, vlen)
for i, param := range bParams {
name, err := rawStrings.Lookup(param.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for func proto parameter %d: %s", i, err)
}
params = append(params, FuncParam{
Name: name,
})
}
for i := range params {
fixup(bParams[i].Type, ¶ms[i].Type)
}
fp := &FuncProto{nil, params}
fixup(header.Type(), &fp.Return)
typ = fp
case kindVar:
buf = buf[:btfVariableLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfVariable, id: %d: %w", id, err)
}
if _, err := unmarshalBtfVariable(&bVariable, buf, bo); err != nil {
return nil, fmt.Errorf("can't read btfVariable, id: %d: %w", id, err)
}
v := &Var{name, nil, VarLinkage(bVariable.Linkage), nil}
fixup(header.Type(), &v.Type)
typ = v
case kindDatasec:
vlen := header.Vlen()
bSecInfos = slices.Grow(bSecInfos[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfVarSecinfoLen)[:vlen*btfVarSecinfoLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfVarSecInfos, id: %d: %w", id, err)
}
if _, err := unmarshalBtfVarSecInfos(bSecInfos, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfVarSecInfos, id: %d: %w", id, err)
}
vars := make([]VarSecinfo, 0, vlen)
for _, btfVar := range bSecInfos {
vars = append(vars, VarSecinfo{
Offset: btfVar.Offset,
Size: btfVar.Size,
})
}
for i := range vars {
fixup(bSecInfos[i].Type, &vars[i].Type)
}
typ = &Datasec{name, header.Size(), vars}
case kindFloat:
typ = &Float{name, header.Size()}
case kindDeclTag:
buf = buf[:btfDeclTagLen]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfDeclTag, id: %d: %w", id, err)
}
if _, err := unmarshalBtfDeclTag(&bDeclTag, buf, bo); err != nil {
return nil, fmt.Errorf("can't read btfDeclTag, id: %d: %w", id, err)
}
btfIndex := bDeclTag.ComponentIdx
if uint64(btfIndex) > math.MaxInt {
return nil, fmt.Errorf("type id %d: index exceeds int", id)
}
dt := &declTag{nil, name, int(int32(btfIndex))}
fixup(header.Type(), &dt.Type)
typ = dt
declTags = append(declTags, dt)
case kindTypeTag:
tt := &TypeTag{nil, name}
fixup(header.Type(), &tt.Type)
typ = tt
case kindEnum64:
vlen := header.Vlen()
bEnums64 = slices.Grow(bEnums64[:0], vlen)[:vlen]
buf = slices.Grow(buf[:0], vlen*btfEnum64Len)[:vlen*btfEnum64Len]
if _, err := io.ReadFull(r, buf); err != nil {
return nil, fmt.Errorf("can't read btfEnum64s, id: %d: %w", id, err)
}
if _, err := unmarshalBtfEnums64(bEnums64, buf, bo); err != nil {
return nil, fmt.Errorf("can't unmarshal btfEnum64s, id: %d: %w", id, err)
}
vals := make([]EnumValue, 0, vlen)
for i, btfVal := range bEnums64 {
name, err := rawStrings.Lookup(btfVal.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for enum64 value %d: %s", i, err)
}
value := (uint64(btfVal.ValHi32) << 32) | uint64(btfVal.ValLo32)
vals = append(vals, EnumValue{name, value})
}
typ = &Enum{name, header.Size(), header.Signed(), vals}
default:
return nil, fmt.Errorf("type id %d: unknown kind: %v", id, header.Kind())
}
types = append(types, typ)
}
for _, fixup := range fixups {
if fixup.id < firstTypeID {
return nil, fmt.Errorf("fixup for base type id %d is not expected", fixup.id)
}
idx := int(fixup.id - firstTypeID)
if idx >= len(types) {
return nil, fmt.Errorf("reference to invalid type id: %d", fixup.id)
}
*fixup.typ = types[idx]
}
for _, bitfieldFixup := range bitfieldFixups {
if bitfieldFixup.id < firstTypeID {
return nil, fmt.Errorf("bitfield fixup from split to base types is not expected")
}
data, ok := legacyBitfields[bitfieldFixup.id]
if ok {
// This is indeed a legacy bitfield, fix it up.
bitfieldFixup.m.Offset += data[0]
bitfieldFixup.m.BitfieldSize = data[1]
}
}
for _, dt := range declTags {
switch t := dt.Type.(type) {
case *Var:
if dt.Index != -1 {
return nil, fmt.Errorf("type %s: component idx %d is not -1", dt, dt.Index)
}
t.Tags = append(t.Tags, dt.Value)
case *Typedef:
if dt.Index != -1 {
return nil, fmt.Errorf("type %s: component idx %d is not -1", dt, dt.Index)
}
t.Tags = append(t.Tags, dt.Value)
case composite:
if dt.Index >= 0 {
members := t.members()
if dt.Index >= len(members) {
return nil, fmt.Errorf("type %s: component idx %d exceeds members of %s", dt, dt.Index, t)
}
members[dt.Index].Tags = append(members[dt.Index].Tags, dt.Value)
continue
}
if dt.Index == -1 {
switch t2 := t.(type) {
case *Struct:
t2.Tags = append(t2.Tags, dt.Value)
case *Union:
t2.Tags = append(t2.Tags, dt.Value)
}
continue
}
return nil, fmt.Errorf("type %s: decl tag for type %s has invalid component idx", dt, t)
case *Func:
fp, ok := t.Type.(*FuncProto)
if !ok {
return nil, fmt.Errorf("type %s: %s is not a FuncProto", dt, t.Type)
}
// Ensure the number of argument tag lists equals the number of arguments
if len(t.ParamTags) == 0 {
t.ParamTags = make([][]string, len(fp.Params))
}
if dt.Index >= 0 {
if dt.Index >= len(fp.Params) {
return nil, fmt.Errorf("type %s: component idx %d exceeds params of %s", dt, dt.Index, t)
}
t.ParamTags[dt.Index] = append(t.ParamTags[dt.Index], dt.Value)
continue
}
if dt.Index == -1 {
t.Tags = append(t.Tags, dt.Value)
continue
}
return nil, fmt.Errorf("type %s: decl tag for type %s has invalid component idx", dt, t)
default:
return nil, fmt.Errorf("type %s: decl tag for type %s is not supported", dt, t)
}
}
return types, nil
}
// essentialName represents the name of a BTF type stripped of any flavor
// suffixes after a ___ delimiter.
type essentialName string
// newEssentialName returns name without a ___ suffix.
//
// CO-RE has the concept of 'struct flavors', which are used to deal with
// changes in kernel data structures. Anything after three underscores
// in a type name is ignored for the purpose of finding a candidate type
// in the kernel's BTF.
func newEssentialName(name string) essentialName {
if name == "" {
return ""
}
lastIdx := strings.LastIndex(name, "___")
if lastIdx > 0 {
return essentialName(name[:lastIdx])
}
return essentialName(name)
}
// UnderlyingType skips qualifiers and Typedefs.
func UnderlyingType(typ Type) Type {
result := typ
for depth := 0; depth <= maxResolveDepth; depth++ {
switch v := (result).(type) {
case qualifier:
result = v.qualify()
case *Typedef:
result = v.Type
default:
return result
}
}
return &cycle{typ}
}
// QualifiedType returns the type with all qualifiers removed.
func QualifiedType(typ Type) Type {
result := typ
for depth := 0; depth <= maxResolveDepth; depth++ {
switch v := (result).(type) {
case qualifier:
result = v.qualify()
default:
return result
}
}
return &cycle{typ}
}
// As returns typ if is of type T. Otherwise it peels qualifiers and Typedefs
// until it finds a T.
//
// Returns the zero value and false if there is no T or if the type is nested
// too deeply.
func As[T Type](typ Type) (T, bool) {
// NB: We can't make this function return (*T) since then
// we can't assert that a type matches an interface which
// embeds Type: as[composite](T).
for depth := 0; depth <= maxResolveDepth; depth++ {
switch v := (typ).(type) {
case T:
return v, true
case qualifier:
typ = v.qualify()
case *Typedef:
typ = v.Type
default:
goto notFound
}
}
notFound:
var zero T
return zero, false
}
type formatState struct {
fmt.State
depth int
}
// formattableType is a subset of Type, to ease unit testing of formatType.
type formattableType interface {
fmt.Formatter
TypeName() string
}
// formatType formats a type in a canonical form.
//
// Handles cyclical types by only printing cycles up to a certain depth. Elements
// in extra are separated by spaces unless the preceding element is a string
// ending in '='.
func formatType(f fmt.State, verb rune, t formattableType, extra ...interface{}) {
if verb != 'v' && verb != 's' {
fmt.Fprintf(f, "{UNRECOGNIZED: %c}", verb)
return
}
_, _ = io.WriteString(f, internal.GoTypeName(t))
if name := t.TypeName(); name != "" {
// Output BTF type name if present.
fmt.Fprintf(f, ":%q", name)
}
if f.Flag('+') {
// Output address if requested.
fmt.Fprintf(f, ":%#p", t)
}
if verb == 's' {
// %s omits details.
return
}
var depth int
if ps, ok := f.(*formatState); ok {
depth = ps.depth
f = ps.State
}
maxDepth, ok := f.Width()
if !ok {
maxDepth = 0
}
if depth > maxDepth {
// We've reached the maximum depth. This avoids infinite recursion even
// for cyclical types.
return
}
if len(extra) == 0 {
return
}
wantSpace := false
_, _ = io.WriteString(f, "[")
for _, arg := range extra {
if wantSpace {
_, _ = io.WriteString(f, " ")
}
switch v := arg.(type) {
case string:
_, _ = io.WriteString(f, v)
wantSpace = len(v) > 0 && v[len(v)-1] != '='
continue
case formattableType:
v.Format(&formatState{f, depth + 1}, verb)
default:
fmt.Fprint(f, arg)
}
wantSpace = true
}
_, _ = io.WriteString(f, "]")
}
|