1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
package ebpf
import (
"errors"
"testing"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/testutils"
"github.com/go-quicktest/qt"
)
func TestFindReferences(t *testing.T) {
progs := map[string]*ProgramSpec{
"entrypoint": {
Type: SocketFilter,
Instructions: asm.Instructions{
// Make sure the call doesn't happen at instruction 0
// to exercise the relative offset calculation.
asm.Mov.Reg(asm.R0, asm.R1),
asm.Call.Label("my_func"),
asm.Return(),
},
License: "MIT",
},
"my_other_func": {
Instructions: asm.Instructions{
asm.LoadImm(asm.R0, 1337, asm.DWord).WithSymbol("my_other_func"),
asm.Return(),
},
},
"my_func": {
Instructions: asm.Instructions{
asm.Call.Label("my_other_func").WithSymbol("my_func"),
asm.Return(),
},
},
}
flattenPrograms(progs, []string{"entrypoint"})
prog, err := NewProgram(progs["entrypoint"])
testutils.SkipIfNotSupported(t, err)
if err != nil {
t.Fatal(err)
}
defer prog.Close()
ret, _, err := prog.Test(internal.EmptyBPFContext)
if err != nil {
t.Fatal(err)
}
if ret != 1337 {
t.Errorf("Expected return code 1337, got %d", ret)
}
}
func TestForwardFunctionDeclaration(t *testing.T) {
file := testutils.NativeFile(t, "testdata/fwd_decl-%s.elf")
coll, err := LoadCollectionSpec(file)
if err != nil {
t.Fatal(err)
}
spec := coll.Programs["call_fwd"]
// This program calls an unimplemented forward function declaration.
_, err = NewProgram(spec)
if !errors.Is(err, asm.ErrUnsatisfiedProgramReference) {
t.Fatal("Expected an error wrapping ErrUnsatisfiedProgramReference, got:", err)
}
// Append the implementation of fwd().
spec.Instructions = append(spec.Instructions,
asm.Mov.Imm32(asm.R0, 23).WithSymbol("fwd"),
asm.Return(),
)
// The body of the subprog we appended does not come with BTF func_infos,
// so the verifier will reject it. Load without BTF.
for i, ins := range spec.Instructions {
if btf.FuncMetadata(&ins) != nil || ins.Source() != nil {
sym := ins.Symbol()
ref := ins.Reference()
ins.Metadata = asm.Metadata{}
spec.Instructions[i] = ins.WithSymbol(sym).WithReference(ref)
}
}
prog, err := NewProgram(spec)
testutils.SkipIfNotSupported(t, err)
if err != nil {
t.Fatalf("%+v", err)
}
defer prog.Close()
ret, _, err := prog.Test(internal.EmptyBPFContext)
if err != nil {
t.Fatal("Running program:", err)
}
if ret != 23 {
t.Fatalf("Expected 23, got %d", ret)
}
}
func TestSplitSymbols(t *testing.T) {
// Splitting an empty insns results in an error.
_, err := splitSymbols(asm.Instructions{})
qt.Assert(t, qt.IsNotNil(err), qt.Commentf("empty insns"))
// Splitting non-empty insns without a leading Symbol is an error.
_, err = splitSymbols(asm.Instructions{
asm.Return(),
})
qt.Assert(t, qt.IsNotNil(err), qt.Commentf("insns without leading Symbol"))
// Non-empty insns with a single Instruction that is a Symbol.
insns := asm.Instructions{
asm.Return().WithSymbol("sym"),
}
m, err := splitSymbols(insns)
qt.Assert(t, qt.IsNil(err), qt.Commentf("insns with a single Symbol"))
qt.Assert(t, qt.HasLen(m, 1))
qt.Assert(t, qt.HasLen(m["sym"], 1))
// Insns containing duplicate Symbols.
_, err = splitSymbols(asm.Instructions{
asm.Return().WithSymbol("sym"),
asm.Return().WithSymbol("sym"),
})
qt.Assert(t, qt.IsNotNil(err), qt.Commentf("insns containing duplicate Symbols"))
// Insns with multiple Symbols and subprogs of various lengths.
m, err = splitSymbols(asm.Instructions{
asm.Return().WithSymbol("sym1"),
asm.Mov.Imm(asm.R0, 0).WithSymbol("sym2"),
asm.Return(),
asm.Mov.Imm(asm.R0, 0).WithSymbol("sym3"),
asm.Mov.Imm(asm.R0, 1),
asm.Return(),
asm.Mov.Imm(asm.R0, 0).WithSymbol("sym4"),
asm.Mov.Imm(asm.R0, 1),
asm.Mov.Imm(asm.R0, 2),
asm.Return(),
})
qt.Assert(t, qt.IsNil(err), qt.Commentf("insns with multiple Symbols"))
qt.Assert(t, qt.HasLen(m, 4))
qt.Assert(t, qt.HasLen(m["sym1"], 1))
qt.Assert(t, qt.HasLen(m["sym2"], 2))
qt.Assert(t, qt.HasLen(m["sym3"], 3))
qt.Assert(t, qt.HasLen(m["sym4"], 4))
}
func TestFlattenInstructionsAllocations(t *testing.T) {
name := "entrypoint"
instructions := asm.Instructions{
asm.LoadImm(asm.R0, 0, asm.DWord),
asm.Return(),
}
prog := &ProgramSpec{
Name: name,
Instructions: instructions,
}
progs := map[string]*ProgramSpec{name: prog}
refs := make(map[*ProgramSpec][]string)
// ensure that flattenInstructions does not allocate memory
// if there is no reference for the given program.
allocs := testing.AllocsPerRun(5, func() {
_ = flattenInstructions(name, progs, refs)
})
qt.Assert(t, qt.Equals(allocs, float64(0)))
}
|