1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
//go:build linux
package perf
import (
"errors"
"fmt"
"io"
"math"
"os"
"runtime"
"sync/atomic"
"unsafe"
"github.com/cilium/ebpf/internal/sys"
"github.com/cilium/ebpf/internal/unix"
)
// perfEventRing is a page of metadata followed by
// a variable number of pages which form a ring buffer.
type perfEventRing struct {
cpu int
mmap []byte
ringReader
}
func newPerfEventRing(cpu, perCPUBuffer int, opts ReaderOptions) (_ *sys.FD, _ *perfEventRing, err error) {
closeOnError := func(c io.Closer) {
if err != nil {
c.Close()
}
}
if opts.Watermark >= perCPUBuffer {
return nil, nil, errors.New("watermark must be smaller than perCPUBuffer")
}
fd, err := createPerfEvent(cpu, opts)
if err != nil {
return nil, nil, err
}
defer closeOnError(fd)
if err := unix.SetNonblock(fd.Int(), true); err != nil {
return nil, nil, err
}
protections := unix.PROT_READ
if !opts.Overwritable {
protections |= unix.PROT_WRITE
}
mmap, err := unix.Mmap(fd.Int(), 0, perfBufferSize(perCPUBuffer), protections, unix.MAP_SHARED)
if err != nil {
return nil, nil, fmt.Errorf("can't mmap: %v", err)
}
// This relies on the fact that we allocate an extra metadata page,
// and that the struct is smaller than an OS page.
// This use of unsafe.Pointer isn't explicitly sanctioned by the
// documentation, since a byte is smaller than sampledPerfEvent.
meta := (*unix.PerfEventMmapPage)(unsafe.Pointer(&mmap[0]))
var reader ringReader
if opts.Overwritable {
reader = newReverseReader(meta, mmap[meta.Data_offset:meta.Data_offset+meta.Data_size])
} else {
reader = newForwardReader(meta, mmap[meta.Data_offset:meta.Data_offset+meta.Data_size])
}
ring := &perfEventRing{
cpu: cpu,
mmap: mmap,
ringReader: reader,
}
runtime.SetFinalizer(ring, (*perfEventRing).Close)
return fd, ring, nil
}
// perfBufferSize returns a valid mmap buffer size for use with perf_event_open (1+2^n pages)
func perfBufferSize(perCPUBuffer int) int {
pageSize := os.Getpagesize()
// Smallest whole number of pages
nPages := (perCPUBuffer + pageSize - 1) / pageSize
// Round up to nearest power of two number of pages
nPages = int(math.Pow(2, math.Ceil(math.Log2(float64(nPages)))))
// Add one for metadata
nPages += 1
return nPages * pageSize
}
func (ring *perfEventRing) Close() error {
runtime.SetFinalizer(ring, nil)
mmap := ring.mmap
ring.mmap = nil
return unix.Munmap(mmap)
}
func createPerfEvent(cpu int, opts ReaderOptions) (*sys.FD, error) {
wakeup := 0
bits := 0
if opts.WakeupEvents > 0 {
wakeup = opts.WakeupEvents
} else {
wakeup = opts.Watermark
if wakeup == 0 {
wakeup = 1
}
bits |= unix.PerfBitWatermark
}
if opts.Overwritable {
bits |= unix.PerfBitWriteBackward
}
attr := unix.PerfEventAttr{
Type: unix.PERF_TYPE_SOFTWARE,
Config: unix.PERF_COUNT_SW_BPF_OUTPUT,
Bits: uint64(bits),
Sample_type: unix.PERF_SAMPLE_RAW,
Wakeup: uint32(wakeup),
}
attr.Size = uint32(unsafe.Sizeof(attr))
fd, err := unix.PerfEventOpen(&attr, -1, cpu, -1, unix.PERF_FLAG_FD_CLOEXEC)
if err != nil {
return nil, fmt.Errorf("can't create perf event: %w", err)
}
return sys.NewFD(fd)
}
type ringReader interface {
loadHead()
size() int
remaining() int
writeTail()
Read(p []byte) (int, error)
}
type forwardReader struct {
meta *unix.PerfEventMmapPage
head, tail uint64
mask uint64
ring []byte
}
func newForwardReader(meta *unix.PerfEventMmapPage, ring []byte) *forwardReader {
return &forwardReader{
meta: meta,
head: atomic.LoadUint64(&meta.Data_head),
tail: atomic.LoadUint64(&meta.Data_tail),
// cap is always a power of two
mask: uint64(cap(ring) - 1),
ring: ring,
}
}
func (rr *forwardReader) loadHead() {
rr.head = atomic.LoadUint64(&rr.meta.Data_head)
}
func (rr *forwardReader) size() int {
return len(rr.ring)
}
func (rr *forwardReader) remaining() int {
return int((rr.head - rr.tail) & rr.mask)
}
func (rr *forwardReader) writeTail() {
// Commit the new tail. This lets the kernel know that
// the ring buffer has been consumed.
atomic.StoreUint64(&rr.meta.Data_tail, rr.tail)
}
func (rr *forwardReader) Read(p []byte) (int, error) {
start := int(rr.tail & rr.mask)
n := len(p)
// Truncate if the read wraps in the ring buffer
if remainder := cap(rr.ring) - start; n > remainder {
n = remainder
}
// Truncate if there isn't enough data
if remainder := int(rr.head - rr.tail); n > remainder {
n = remainder
}
copy(p, rr.ring[start:start+n])
rr.tail += uint64(n)
if rr.tail == rr.head {
return n, io.EOF
}
return n, nil
}
type reverseReader struct {
meta *unix.PerfEventMmapPage
// head is the position where the kernel last wrote data.
head uint64
// read is the position we read the next data from. Updated as reads are made.
read uint64
// tail is the end of the ring buffer. No reads must be made past it.
tail uint64
mask uint64
ring []byte
}
func newReverseReader(meta *unix.PerfEventMmapPage, ring []byte) *reverseReader {
rr := &reverseReader{
meta: meta,
mask: uint64(cap(ring) - 1),
ring: ring,
}
rr.loadHead()
return rr
}
func (rr *reverseReader) loadHead() {
// The diagram below represents an overwritable perf ring buffer:
//
// head read tail
// | | |
// V V V
// +---+--------+------------+---------+--------+
// | |H-D....D|H-C........C|H-B.....B|H-A....A|
// +---+--------+------------+---------+--------+
// <--Write from right to left
// Read from left to right-->
// (H means header)
//
// The buffer is read left to right beginning from head to tail.
// [head, read) is the read portion of the buffer, [read, tail) the unread one.
// read is adjusted as we progress through the buffer.
// Avoid reading sample D multiple times by discarding unread samples C, B, A.
rr.tail = rr.head
// Get the new head and starting reading from it.
rr.head = atomic.LoadUint64(&rr.meta.Data_head)
rr.read = rr.head
if rr.tail-rr.head > uint64(cap(rr.ring)) {
// ring has been fully written, only permit at most cap(rr.ring)
// bytes to be read.
rr.tail = rr.head + uint64(cap(rr.ring))
}
}
func (rr *reverseReader) size() int {
return len(rr.ring)
}
func (rr *reverseReader) remaining() int {
// remaining data is inaccurate for overwritable buffers
// once an overwrite happens, so return -1 here.
return -1
}
func (rr *reverseReader) writeTail() {
// We do not care about tail for over writable perf buffer.
// So, this function is noop.
}
func (rr *reverseReader) Read(p []byte) (int, error) {
start := int(rr.read & rr.mask)
n := len(p)
// Truncate if the read wraps in the ring buffer
if remainder := cap(rr.ring) - start; n > remainder {
n = remainder
}
// Truncate if there isn't enough data
if remainder := int(rr.tail - rr.read); n > remainder {
n = remainder
}
copy(p, rr.ring[start:start+n])
rr.read += uint64(n)
if rr.read == rr.tail {
return n, io.EOF
}
return n, nil
}
|