1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
package goldilocks
import (
"encoding/binary"
"math/bits"
)
// ScalarSize is the size (in bytes) of scalars.
const ScalarSize = 56 // 448 / 8
//_N is the number of 64-bit words to store scalars.
const _N = 7 // 448 / 64
// Scalar represents a positive integer stored in little-endian order.
type Scalar [ScalarSize]byte
type scalar64 [_N]uint64
func (z *scalar64) fromScalar(x *Scalar) {
z[0] = binary.LittleEndian.Uint64(x[0*8 : 1*8])
z[1] = binary.LittleEndian.Uint64(x[1*8 : 2*8])
z[2] = binary.LittleEndian.Uint64(x[2*8 : 3*8])
z[3] = binary.LittleEndian.Uint64(x[3*8 : 4*8])
z[4] = binary.LittleEndian.Uint64(x[4*8 : 5*8])
z[5] = binary.LittleEndian.Uint64(x[5*8 : 6*8])
z[6] = binary.LittleEndian.Uint64(x[6*8 : 7*8])
}
func (z *scalar64) toScalar(x *Scalar) {
binary.LittleEndian.PutUint64(x[0*8:1*8], z[0])
binary.LittleEndian.PutUint64(x[1*8:2*8], z[1])
binary.LittleEndian.PutUint64(x[2*8:3*8], z[2])
binary.LittleEndian.PutUint64(x[3*8:4*8], z[3])
binary.LittleEndian.PutUint64(x[4*8:5*8], z[4])
binary.LittleEndian.PutUint64(x[5*8:6*8], z[5])
binary.LittleEndian.PutUint64(x[6*8:7*8], z[6])
}
// add calculates z = x + y. Assumes len(z) > max(len(x),len(y)).
func add(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Add64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Add64(zz[i], 0, c)
}
return c
}
// sub calculates z = x - y. Assumes len(z) > max(len(x),len(y)).
func sub(z, x, y []uint64) uint64 {
l, L, zz := len(x), len(y), y
if l > L {
l, L, zz = L, l, x
}
c := uint64(0)
for i := 0; i < l; i++ {
z[i], c = bits.Sub64(x[i], y[i], c)
}
for i := l; i < L; i++ {
z[i], c = bits.Sub64(zz[i], 0, c)
}
return c
}
// mulWord calculates z = x * y. Assumes len(z) >= len(x)+1.
func mulWord(z, x []uint64, y uint64) {
for i := range z {
z[i] = 0
}
carry := uint64(0)
for i := range x {
hi, lo := bits.Mul64(x[i], y)
lo, cc := bits.Add64(lo, z[i], 0)
hi, _ = bits.Add64(hi, 0, cc)
z[i], cc = bits.Add64(lo, carry, 0)
carry, _ = bits.Add64(hi, 0, cc)
}
z[len(x)] = carry
}
// Cmov moves x into z if b=1.
func (z *scalar64) Cmov(b uint64, x *scalar64) {
m := uint64(0) - b
for i := range z {
z[i] = (z[i] &^ m) | (x[i] & m)
}
}
// leftShift shifts to the left the words of z returning the more significant word.
func (z *scalar64) leftShift(low uint64) uint64 {
high := z[_N-1]
for i := _N - 1; i > 0; i-- {
z[i] = z[i-1]
}
z[0] = low
return high
}
// reduceOneWord calculates z = z + 2^448*x such that the result fits in a Scalar.
func (z *scalar64) reduceOneWord(x uint64) {
prod := (&scalar64{})[:]
mulWord(prod, residue448[:], x)
cc := add(z[:], z[:], prod)
mulWord(prod, residue448[:], cc)
add(z[:], z[:], prod)
}
// modOrder reduces z mod order.
func (z *scalar64) modOrder() {
var o64, x scalar64
o64.fromScalar(&order)
// Performs: while (z >= order) { z = z-order }
// At most 8 (eight) iterations reduce 3 bits by subtracting.
for i := 0; i < 8; i++ {
c := sub(x[:], z[:], o64[:]) // (c || x) = z-order
z.Cmov(1-c, &x) // if c != 0 { z = x }
}
}
// FromBytes stores z = x mod order, where x is a number stored in little-endian order.
func (z *Scalar) FromBytes(x []byte) {
n := len(x)
nCeil := (n + 7) >> 3
for i := range z {
z[i] = 0
}
if nCeil < _N {
copy(z[:], x)
return
}
copy(z[:], x[8*(nCeil-_N):])
var z64 scalar64
z64.fromScalar(z)
for i := nCeil - _N - 1; i >= 0; i-- {
low := binary.LittleEndian.Uint64(x[8*i:])
high := z64.leftShift(low)
z64.reduceOneWord(high)
}
z64.modOrder()
z64.toScalar(z)
}
// divBy4 calculates z = x/4 mod order.
func (z *Scalar) divBy4(x *Scalar) { z.Mul(x, &invFour) }
// Red reduces z mod order.
func (z *Scalar) Red() { var t scalar64; t.fromScalar(z); t.modOrder(); t.toScalar(z) }
// Neg calculates z = -z mod order.
func (z *Scalar) Neg() { z.Sub(&order, z) }
// Add calculates z = x+y mod order.
func (z *Scalar) Add(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := add(z64[:], x64[:], y64[:])
add(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Sub calculates z = x-y mod order.
func (z *Scalar) Sub(x, y *Scalar) {
var z64, x64, y64, t scalar64
x64.fromScalar(x)
y64.fromScalar(y)
c := sub(z64[:], x64[:], y64[:])
sub(t[:], z64[:], residue448[:])
z64.Cmov(c, &t)
z64.modOrder()
z64.toScalar(z)
}
// Mul calculates z = x*y mod order.
func (z *Scalar) Mul(x, y *Scalar) {
var z64, x64, y64 scalar64
prod := (&[_N + 1]uint64{})[:]
x64.fromScalar(x)
y64.fromScalar(y)
mulWord(prod, x64[:], y64[_N-1])
copy(z64[:], prod[:_N])
z64.reduceOneWord(prod[_N])
for i := _N - 2; i >= 0; i-- {
h := z64.leftShift(0)
z64.reduceOneWord(h)
mulWord(prod, x64[:], y64[i])
c := add(z64[:], z64[:], prod[:_N])
z64.reduceOneWord(prod[_N] + c)
}
z64.modOrder()
z64.toScalar(z)
}
// IsZero returns true if z=0.
func (z *Scalar) IsZero() bool { z.Red(); return *z == Scalar{} }
|