1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
package goldilocks
import (
"fmt"
fp "github.com/cloudflare/circl/math/fp448"
)
type twistPoint struct{ x, y, z, ta, tb fp.Elt }
type preTwistPointAffine struct{ addYX, subYX, dt2 fp.Elt }
type preTwistPointProy struct {
preTwistPointAffine
z2 fp.Elt
}
func (P *twistPoint) String() string {
return fmt.Sprintf("x: %v\ny: %v\nz: %v\nta: %v\ntb: %v", P.x, P.y, P.z, P.ta, P.tb)
}
// cneg conditionally negates the point if b=1.
func (P *twistPoint) cneg(b uint) {
t := &fp.Elt{}
fp.Neg(t, &P.x)
fp.Cmov(&P.x, t, b)
fp.Neg(t, &P.ta)
fp.Cmov(&P.ta, t, b)
}
// Double updates P with 2P.
func (P *twistPoint) Double() {
// This is formula (7) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
a, b, c, e, f, g, h := Px, Py, Pz, Pta, Px, Py, Ptb
fp.Add(e, Px, Py) // x+y
fp.Sqr(a, Px) // A = x^2
fp.Sqr(b, Py) // B = y^2
fp.Sqr(c, Pz) // z^2
fp.Add(c, c, c) // C = 2*z^2
fp.Add(h, a, b) // H = A+B
fp.Sqr(e, e) // (x+y)^2
fp.Sub(e, e, h) // E = (x+y)^2-A-B
fp.Sub(g, b, a) // G = B-A
fp.Sub(f, c, g) // F = C-G
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q = 1.
func (P *twistPoint) mixAddZ1(Q *preTwistPointAffine) {
fp.Add(&P.z, &P.z, &P.z) // D = 2*z1 (z2=1)
P.coreAddition(Q)
}
// coreAddition calculates P=P+Q for curves with A=-1.
func (P *twistPoint) coreAddition(Q *preTwistPointAffine) {
// This is the formula following (5) from "Twisted Edwards Curves Revisited" by
// Hisil H., Wong K.KH., Carter G., Dawson E. (2008)
// https://doi.org/10.1007/978-3-540-89255-7_20
Px, Py, Pz, Pta, Ptb := &P.x, &P.y, &P.z, &P.ta, &P.tb
addYX2, subYX2, dt2 := &Q.addYX, &Q.subYX, &Q.dt2
a, b, c, d, e, f, g, h := Px, Py, &fp.Elt{}, Pz, Pta, Px, Py, Ptb
fp.Mul(c, Pta, Ptb) // t1 = ta*tb
fp.Sub(h, Py, Px) // y1-x1
fp.Add(b, Py, Px) // y1+x1
fp.Mul(a, h, subYX2) // A = (y1-x1)*(y2-x2)
fp.Mul(b, b, addYX2) // B = (y1+x1)*(y2+x2)
fp.Mul(c, c, dt2) // C = 2*D*t1*t2
fp.Sub(e, b, a) // E = B-A
fp.Add(h, b, a) // H = B+A
fp.Sub(f, d, c) // F = D-C
fp.Add(g, d, c) // G = D+C
fp.Mul(Pz, f, g) // Z = F * G
fp.Mul(Px, e, f) // X = E * F
fp.Mul(Py, g, h) // Y = G * H, T = E * H
}
func (P *preTwistPointAffine) neg() {
P.addYX, P.subYX = P.subYX, P.addYX
fp.Neg(&P.dt2, &P.dt2)
}
func (P *preTwistPointAffine) cneg(b int) {
t := &fp.Elt{}
fp.Cswap(&P.addYX, &P.subYX, uint(b))
fp.Neg(t, &P.dt2)
fp.Cmov(&P.dt2, t, uint(b))
}
func (P *preTwistPointAffine) cmov(Q *preTwistPointAffine, b uint) {
fp.Cmov(&P.addYX, &Q.addYX, b)
fp.Cmov(&P.subYX, &Q.subYX, b)
fp.Cmov(&P.dt2, &Q.dt2, b)
}
// mixAdd calculates P= P+Q, where Q is a precomputed point with Z_Q != 1.
func (P *twistPoint) mixAdd(Q *preTwistPointProy) {
fp.Mul(&P.z, &P.z, &Q.z2) // D = 2*z1*z2
P.coreAddition(&Q.preTwistPointAffine)
}
// oddMultiples calculates T[i] = (2*i-1)P for 0 < i < len(T).
func (P *twistPoint) oddMultiples(T []preTwistPointProy) {
if n := len(T); n > 0 {
T[0].FromTwistPoint(P)
_2P := *P
_2P.Double()
R := &preTwistPointProy{}
R.FromTwistPoint(&_2P)
for i := 1; i < n; i++ {
P.mixAdd(R)
T[i].FromTwistPoint(P)
}
}
}
// cmov conditionally moves Q into P if b=1.
func (P *preTwistPointProy) cmov(Q *preTwistPointProy, b uint) {
P.preTwistPointAffine.cmov(&Q.preTwistPointAffine, b)
fp.Cmov(&P.z2, &Q.z2, b)
}
// FromTwistPoint precomputes some coordinates of Q for missed addition.
func (P *preTwistPointProy) FromTwistPoint(Q *twistPoint) {
fp.Add(&P.addYX, &Q.y, &Q.x) // addYX = X + Y
fp.Sub(&P.subYX, &Q.y, &Q.x) // subYX = Y - X
fp.Mul(&P.dt2, &Q.ta, &Q.tb) // T = ta*tb
fp.Mul(&P.dt2, &P.dt2, ¶mDTwist) // D*T
fp.Add(&P.dt2, &P.dt2, &P.dt2) // dt2 = 2*D*T
fp.Add(&P.z2, &Q.z, &Q.z) // z2 = 2*Z
}
|