1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// +build arm64 amd64
package p384
import (
"crypto/elliptic"
"crypto/subtle"
"math/big"
"github.com/cloudflare/circl/math"
)
// Curve is used to provide the extended functionality and performance of
// elliptic.Curve interface.
type Curve interface {
elliptic.Curve
// IsAtInfinity returns True is the point is the identity point.
IsAtInfinity(X, Y *big.Int) bool
// CombinedMult calculates P=mG+nQ, where G is the generator and
// Q=(Qx,Qy). The scalars m and n are positive integers in big-endian form.
// Runs in non-constant time to be used in signature verification.
CombinedMult(Qx, Qy *big.Int, m, n []byte) (Px, Py *big.Int)
}
type curve struct{}
// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4).
func P384() Curve { return curve{} }
// Params returns the parameters for the curve. Note: The value returned by
// this function fallbacks to the stdlib implementation of elliptic curve
// operations. Use this method to only recover elliptic curve parameters.
func (c curve) Params() *elliptic.CurveParams { return elliptic.P384().Params() }
// IsAtInfinity returns True is the point is the identity point.
func (c curve) IsAtInfinity(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// IsOnCurve reports whether the given (x,y) lies on the curve.
func (c curve) IsOnCurve(x, y *big.Int) bool {
x1, y1 := &fp384{}, &fp384{}
x1.SetBigInt(x)
y1.SetBigInt(y)
montEncode(x1, x1)
montEncode(y1, y1)
y2, x3 := &fp384{}, &fp384{}
fp384Sqr(y2, y1)
fp384Sqr(x3, x1)
fp384Mul(x3, x3, x1)
threeX := &fp384{}
fp384Add(threeX, x1, x1)
fp384Add(threeX, threeX, x1)
fp384Sub(x3, x3, threeX)
fp384Add(x3, x3, &bb)
return *y2 == *x3
}
// Add returns the sum of (x1,y1) and (x2,y2).
func (c curve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
P := newAffinePoint(x1, y1).toJacobian()
P.mixadd(P, newAffinePoint(x2, y2))
return P.toAffine().toInt()
}
// Double returns 2*(x,y).
func (c curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
P := newAffinePoint(x1, y1).toJacobian()
P.double()
return P.toAffine().toInt()
}
// reduceScalar shorten a scalar modulo the order of the curve.
func (c curve) reduceScalar(k []byte) []byte {
const max = sizeFp
if len(k) > max {
bigK := new(big.Int).SetBytes(k)
bigK.Mod(bigK, c.Params().N)
k = bigK.Bytes()
}
if len(k) < max {
k = append(make([]byte, max-len(k)), k...)
}
return k
}
// toOdd performs k = (-k mod N) if k is even.
func (c curve) toOdd(k []byte) ([]byte, int) {
var X, Y big.Int
X.SetBytes(k)
Y.Neg(&X).Mod(&Y, c.Params().N)
isEven := 1 - int(X.Bit(0))
x := X.Bytes()
y := Y.Bytes()
if len(x) < len(y) {
x = append(make([]byte, len(y)-len(x)), x...)
} else if len(x) > len(y) {
y = append(make([]byte, len(x)-len(y)), y...)
}
subtle.ConstantTimeCopy(isEven, x, y)
return x, isEven
}
// ScalarMult returns (Qx,Qy)=k*(Px,Py) where k is a number in big-endian form.
func (c curve) ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) {
return c.scalarMultOmega(x1, y1, k, 5)
}
func (c curve) scalarMultOmega(x1, y1 *big.Int, k []byte, omega uint) (x, y *big.Int) {
k = c.reduceScalar(k)
oddK, isEvenK := c.toOdd(k)
var scalar big.Int
scalar.SetBytes(oddK)
if scalar.Sign() == 0 {
return new(big.Int), new(big.Int)
}
const bitsN = uint(384)
L := math.SignedDigit(&scalar, omega, bitsN)
var R jacobianPoint
Q := zeroPoint().toJacobian()
TabP := newAffinePoint(x1, y1).oddMultiples(omega)
for i := len(L) - 1; i > 0; i-- {
for j := uint(0); j < omega-1; j++ {
Q.double()
}
idx := absolute(L[i]) >> 1
for j := range TabP {
R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
}
R.cneg(int(L[i]>>31) & 1)
Q.add(Q, &R)
}
// Calculate the last iteration using complete addition formula.
for j := uint(0); j < omega-1; j++ {
Q.double()
}
idx := absolute(L[0]) >> 1
for j := range TabP {
R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
}
R.cneg(int(L[0]>>31) & 1)
QQ := Q.toProjective()
QQ.completeAdd(QQ, R.toProjective())
QQ.cneg(isEvenK)
return QQ.toAffine().toInt()
}
// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
func (c curve) ScalarBaseMult(k []byte) (x, y *big.Int) {
params := c.Params()
return c.ScalarMult(params.Gx, params.Gy, k)
}
// CombinedMult calculates P=mG+nQ, where G is the generator and Q=(x,y,z).
// The scalars m and n are integers in big-endian form. Non-constant time.
func (c curve) CombinedMult(xQ, yQ *big.Int, m, n []byte) (xP, yP *big.Int) {
const nOmega = uint(5)
var k big.Int
k.SetBytes(m)
nafM := math.OmegaNAF(&k, baseOmega)
k.SetBytes(n)
nafN := math.OmegaNAF(&k, nOmega)
if len(nafM) > len(nafN) {
nafN = append(nafN, make([]int32, len(nafM)-len(nafN))...)
} else if len(nafM) < len(nafN) {
nafM = append(nafM, make([]int32, len(nafN)-len(nafM))...)
}
TabQ := newAffinePoint(xQ, yQ).oddMultiples(nOmega)
var jR jacobianPoint
var aR affinePoint
P := zeroPoint().toJacobian()
for i := len(nafN) - 1; i >= 0; i-- {
P.double()
// Generator point
if nafM[i] != 0 {
idxM := absolute(nafM[i]) >> 1
aR = baseOddMultiples[idxM]
if nafM[i] < 0 {
aR.neg()
}
P.mixadd(P, &aR)
}
// Input point
if nafN[i] != 0 {
idxN := absolute(nafN[i]) >> 1
jR = TabQ[idxN]
if nafN[i] < 0 {
jR.neg()
}
P.add(P, &jR)
}
}
return P.toAffine().toInt()
}
// absolute returns always a positive value.
func absolute(x int32) int32 {
mask := x >> 31
return (x + mask) ^ mask
}
|