1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// Code generated by fiat.go using fiat-crypto v0.1.4.
//
// Autogenerated: './FiatCrypto_v.0.1.4-issue1672' word-by-word-montgomery --output 'fp128/fiatMont.go' --lang Go --package-name fp128 --doc-prepend-header 'Code generated by fiat.go using fiat-crypto v0.1.4.' --package-case lowerCamelCase --public-function-case lowerCamelCase --public-type-case lowerCamelCase --doc-newline-before-package-declaration --no-primitives --widen-carry --no-field-element-typedefs --relax-primitive-carry-to-bitwidth 64 Fp 64 0xffffffffffffffe40000000000000001 add sub mul square
//
// curve description: Fp
//
// machine_wordsize = 64 (from "64")
//
// requested operations: add, sub, mul, square
//
// m = 0xffffffffffffffe40000000000000001 (from "0xffffffffffffffe40000000000000001")
//
//
//
// NOTE: In addition to the bounds specified above each function, all
//
// functions synthesized for this Montgomery arithmetic require the
//
// input to be strictly less than the prime modulus (m), and also
//
// require the input to be in the unique saturated representation.
//
// All functions also ensure that these two properties are true of
//
// return values.
//
//
//
// Computed values:
//
// eval z = z[0] + (z[1] << 64)
//
// bytes_eval z = z[0] + (z[1] << 8) + (z[2] << 16) + (z[3] << 24) + (z[4] << 32) + (z[5] << 40) + (z[6] << 48) + (z[7] << 56) + (z[8] << 64) + (z[9] << 72) + (z[10] << 80) + (z[11] << 88) + (z[12] << 96) + (z[13] << 104) + (z[14] << 112) + (z[15] << 120)
//
// twos_complement_eval z = let x1 := z[0] + (z[1] << 64) in
//
// if x1 & (2^128-1) < 2^127 then x1 & (2^128-1) else (x1 & (2^128-1)) - 2^128
package fp128
import "math/bits"
// The function fiatFpAdd adds two field elements in the Montgomery domain.
//
// Preconditions:
// 0 ≤ eval arg1 < m
// 0 ≤ eval arg2 < m
// Postconditions:
// eval (from_montgomery out1) mod m = (eval (from_montgomery arg1) + eval (from_montgomery arg2)) mod m
// 0 ≤ eval out1 < m
//
// Input Bounds:
// arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// Output Bounds:
// out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
func fiatFpAdd(out1 *Fp, arg1 *Fp, arg2 *Fp) {
var x1 uint64
var x2 uint64
x1, x2 = bits.Add64(arg1[0], arg2[0], uint64(0x0))
var x3 uint64
var x4 uint64
x3, x4 = bits.Add64(arg1[1], arg2[1], uint64(x2))
var x5 uint64
var x6 uint64
x5, x6 = bits.Sub64(x1, 0x1, uint64(uint64(0x0)))
var x7 uint64
var x8 uint64
x7, x8 = bits.Sub64(x3, 0xffffffffffffffe4, uint64(x6))
var x10 uint64
_, x10 = bits.Sub64(x4, uint64(0x0), uint64(x8))
var x11 uint64
fiatFpCmovznzU64(&x11, x10, x5, x1)
var x12 uint64
fiatFpCmovznzU64(&x12, x10, x7, x3)
out1[0] = x11
out1[1] = x12
}
// The function fiatFpSub subtracts two field elements in the Montgomery domain.
//
// Preconditions:
// 0 ≤ eval arg1 < m
// 0 ≤ eval arg2 < m
// Postconditions:
// eval (from_montgomery out1) mod m = (eval (from_montgomery arg1) - eval (from_montgomery arg2)) mod m
// 0 ≤ eval out1 < m
//
// Input Bounds:
// arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// Output Bounds:
// out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
func fiatFpSub(out1 *Fp, arg1 *Fp, arg2 *Fp) {
x1 := arg2[1]
x2 := arg2[0]
var x3 uint64
var x4 uint64
x3, x4 = bits.Sub64(arg1[0], x2, uint64(0x0))
var x5 uint64
var x6 uint64
x5, x6 = bits.Sub64(arg1[1], x1, uint64(x4))
var x7 uint64
fiatFpCmovznzU64(&x7, x6, uint64(0x0), 0xffffffffffffffff)
var x8 uint64
var x9 uint64
x8, x9 = bits.Add64(x3, (x7 & 0x1), uint64(0x0))
var x10 uint64
x10, _ = bits.Add64(x5, (x7 & 0xffffffffffffffe4), uint64(x9))
out1[0] = x8
out1[1] = x10
}
// The function fiatFpMul multiplies two field elements in the Montgomery domain.
//
// Preconditions:
// 0 ≤ eval arg1 < m
// 0 ≤ eval arg2 < m
// Postconditions:
// eval (from_montgomery out1) mod m = (eval (from_montgomery arg1) * eval (from_montgomery arg2)) mod m
// 0 ≤ eval out1 < m
//
// Input Bounds:
// arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// Output Bounds:
// out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
func fiatFpMul(out1 *Fp, arg1 *Fp, arg2 *Fp) {
x1 := arg1[1]
x2 := arg1[0]
var x3 uint64
var x4 uint64
x4, x3 = bits.Mul64(x2, arg2[1])
var x5 uint64
var x6 uint64
x6, x5 = bits.Mul64(x2, arg2[0])
var x7 uint64
var x8 uint64
x7, x8 = bits.Add64(x6, x3, uint64(0x0))
x9 := (x8 + x4)
var x10 uint64
_, x10 = bits.Mul64(x5, 0xffffffffffffffff)
var x12 uint64
var x13 uint64
x13, x12 = bits.Mul64(x10, 0xffffffffffffffe4)
var x15 uint64
_, x15 = bits.Add64(x5, x10, uint64(0x0))
var x16 uint64
var x17 uint64
x16, x17 = bits.Add64(x7, x12, uint64(x15))
var x18 uint64
var x19 uint64
x18, x19 = bits.Add64(x9, x13, uint64(x17))
var x20 uint64
var x21 uint64
x21, x20 = bits.Mul64(x1, arg2[1])
var x22 uint64
var x23 uint64
x23, x22 = bits.Mul64(x1, arg2[0])
var x24 uint64
var x25 uint64
x24, x25 = bits.Add64(x23, x20, uint64(0x0))
x26 := (x25 + x21)
var x27 uint64
var x28 uint64
x27, x28 = bits.Add64(x16, x22, uint64(0x0))
var x29 uint64
var x30 uint64
x29, x30 = bits.Add64(x18, x24, uint64(x28))
var x31 uint64
var x32 uint64
x31, x32 = bits.Add64(x19, x26, uint64(x30))
var x33 uint64
_, x33 = bits.Mul64(x27, 0xffffffffffffffff)
var x35 uint64
var x36 uint64
x36, x35 = bits.Mul64(x33, 0xffffffffffffffe4)
var x38 uint64
_, x38 = bits.Add64(x27, x33, uint64(0x0))
var x39 uint64
var x40 uint64
x39, x40 = bits.Add64(x29, x35, uint64(x38))
var x41 uint64
var x42 uint64
x41, x42 = bits.Add64(x31, x36, uint64(x40))
x43 := (x42 + x32)
var x44 uint64
var x45 uint64
x44, x45 = bits.Sub64(x39, 0x1, uint64(uint64(0x0)))
var x46 uint64
var x47 uint64
x46, x47 = bits.Sub64(x41, 0xffffffffffffffe4, uint64(x45))
var x49 uint64
_, x49 = bits.Sub64(x43, uint64(0x0), uint64(x47))
var x50 uint64
fiatFpCmovznzU64(&x50, x49, x44, x39)
var x51 uint64
fiatFpCmovznzU64(&x51, x49, x46, x41)
out1[0] = x50
out1[1] = x51
}
// The function fiatFpSquare squares a field element in the Montgomery domain.
//
// Preconditions:
// 0 ≤ eval arg1 < m
// Postconditions:
// eval (from_montgomery out1) mod m = (eval (from_montgomery arg1) * eval (from_montgomery arg1)) mod m
// 0 ≤ eval out1 < m
//
// Input Bounds:
// arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
// Output Bounds:
// out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
func fiatFpSquare(out1 *Fp, arg1 *Fp) {
x1 := arg1[1]
x2 := arg1[0]
var x3 uint64
var x4 uint64
x4, x3 = bits.Mul64(x2, arg1[1])
var x5 uint64
var x6 uint64
x6, x5 = bits.Mul64(x2, arg1[0])
var x7 uint64
var x8 uint64
x7, x8 = bits.Add64(x6, x3, uint64(0x0))
x9 := (x8 + x4)
var x10 uint64
_, x10 = bits.Mul64(x5, 0xffffffffffffffff)
var x12 uint64
var x13 uint64
x13, x12 = bits.Mul64(x10, 0xffffffffffffffe4)
var x15 uint64
_, x15 = bits.Add64(x5, x10, uint64(0x0))
var x16 uint64
var x17 uint64
x16, x17 = bits.Add64(x7, x12, uint64(x15))
var x18 uint64
var x19 uint64
x18, x19 = bits.Add64(x9, x13, uint64(x17))
var x20 uint64
var x21 uint64
x21, x20 = bits.Mul64(x1, arg1[1])
var x22 uint64
var x23 uint64
x23, x22 = bits.Mul64(x1, arg1[0])
var x24 uint64
var x25 uint64
x24, x25 = bits.Add64(x23, x20, uint64(0x0))
x26 := (x25 + x21)
var x27 uint64
var x28 uint64
x27, x28 = bits.Add64(x16, x22, uint64(0x0))
var x29 uint64
var x30 uint64
x29, x30 = bits.Add64(x18, x24, uint64(x28))
var x31 uint64
var x32 uint64
x31, x32 = bits.Add64(x19, x26, uint64(x30))
var x33 uint64
_, x33 = bits.Mul64(x27, 0xffffffffffffffff)
var x35 uint64
var x36 uint64
x36, x35 = bits.Mul64(x33, 0xffffffffffffffe4)
var x38 uint64
_, x38 = bits.Add64(x27, x33, uint64(0x0))
var x39 uint64
var x40 uint64
x39, x40 = bits.Add64(x29, x35, uint64(x38))
var x41 uint64
var x42 uint64
x41, x42 = bits.Add64(x31, x36, uint64(x40))
x43 := (x42 + x32)
var x44 uint64
var x45 uint64
x44, x45 = bits.Sub64(x39, 0x1, uint64(uint64(0x0)))
var x46 uint64
var x47 uint64
x46, x47 = bits.Sub64(x41, 0xffffffffffffffe4, uint64(x45))
var x49 uint64
_, x49 = bits.Sub64(x43, uint64(0x0), uint64(x47))
var x50 uint64
fiatFpCmovznzU64(&x50, x49, x44, x39)
var x51 uint64
fiatFpCmovznzU64(&x51, x49, x46, x41)
out1[0] = x50
out1[1] = x51
}
|