1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Code generated from ./templates/field.go.tmpl. DO NOT EDIT.
package fp64
import (
"bytes"
"crypto/subtle"
"encoding/binary"
"errors"
"io"
"github.com/cloudflare/circl/internal/conv"
"github.com/cloudflare/circl/internal/sha3"
"golang.org/x/crypto/cryptobyte"
)
// Size is the length in bytes of an Fp64 element.
const Size = 8
// Fp represents a prime field element as a positive integer less than Order.
type Fp [1]uint64
func (z Fp) String() string { x := z.fromMont(); return conv.Uint64Le2Hex(x[:]) }
func (z Fp) Size() uint { return Size }
func (z Fp) OrderRootUnity() uint { return numRootsUnity }
func (z *Fp) AddAssign(x *Fp) { fiatFpAdd(z, z, x) }
func (z *Fp) SubAssign(x *Fp) { fiatFpSub(z, z, x) }
func (z *Fp) MulAssign(x *Fp) { fiatFpMul(z, z, x) }
func (z *Fp) Add(x, y *Fp) { fiatFpAdd(z, x, y) }
func (z *Fp) Sub(x, y *Fp) { fiatFpSub(z, x, y) }
func (z *Fp) Mul(x, y *Fp) { fiatFpMul(z, x, y) }
func (z *Fp) Sqr(x *Fp) { fiatFpSquare(z, x) }
func (z *Fp) IsZero() bool { return ctEqual(z, &Fp{}) }
func (z *Fp) IsOne() bool { return ctEqual(z, &rootOfUnityTwoN[0]) }
func (z *Fp) IsEqual(x *Fp) bool { return ctEqual(z, x) }
func (z *Fp) SetOne() { *z = rootOfUnityTwoN[0] }
func (z *Fp) toMont() { fiatFpMul(z, z, &rSquare) }
func (z *Fp) fromMont() (out Fp) { fiatFpMul(&out, z, &Fp{1}); return }
func (z *Fp) MarshalBinary() ([]byte, error) { return conv.MarshalBinaryLen(z, Size) }
func (z *Fp) UnmarshalBinary(b []byte) error { return conv.UnmarshalBinary(z, b) }
func (z *Fp) Marshal(b *cryptobyte.Builder) error {
var x [Size]byte
for i, zi := range z.fromMont() {
binary.LittleEndian.PutUint64(x[8*i:], zi)
}
b.AddBytes(x[:])
return nil
}
func (z *Fp) Unmarshal(s *cryptobyte.String) bool {
var b [Size]byte
if s.CopyBytes(b[:]) {
n, ok := isInRange(&b)
if ok {
*z = n
z.toMont()
return true
}
}
return false
}
func (z *Fp) Random(r io.Reader) error {
var b [Size]byte
var ok bool
for range maxNumTries {
_, err := r.Read(b[:])
if err != nil {
return err
}
*z, ok = isInRange(&b)
if ok {
z.toMont()
return nil
}
}
return ErrMaxNumTries
}
func (z *Fp) RandomSHA3(s *sha3.State) error {
var b [Size]byte
var ok bool
for range maxNumTries {
_, err := s.Read(b[:])
if err != nil {
return err
}
*z, ok = isInRange(&b)
if ok {
z.toMont()
return nil
}
}
return ErrMaxNumTries
}
func (z *Fp) InvUint64(x uint64) {
if 0 < x && x <= numInverseInt {
*z = inverseInt[x-1]
} else {
err := z.SetUint64(x)
if err != nil {
panic(ErrFieldEltDecode)
}
z.Inv(z)
}
}
func (z *Fp) InvTwoN(n uint) {
z.SetOne()
for range n {
z.Mul(z, &half)
}
}
func (z *Fp) SetUint64(n uint64) error {
if n >= orderP0 {
return ErrFieldEltDecode
}
*z = Fp{n}
z.toMont()
return nil
}
func (z *Fp) GetUint64() (uint64, error) {
x := z.fromMont()
return x[0], nil
}
func (z *Fp) SetRootOfUnityTwoN(n uint) {
if n > numRootsUnity {
panic(ErrRootsOfUnity)
}
*z = rootOfUnityTwoN[n]
}
func (z Fp) Order() []byte {
var x [Size]byte
binary.Write(bytes.NewBuffer(x[:0]), binary.BigEndian, []uint64{orderP0})
return x[:]
}
func (z *Fp) sqri(x *Fp, n uint) {
z.Sqr(x)
for range n - 1 {
z.Sqr(z)
}
}
func fiatFpCmovznzU64(z *uint64, b, x, y uint64) { *z = (x &^ (-b)) | (y & (-b)) }
func ctEqual(x, y *Fp) bool {
var v uint64
for i := 0; i < len(*x); i++ {
v |= (*x)[i] ^ (*y)[i]
}
v32 := uint32(v>>32) | uint32(v)
return subtle.ConstantTimeEq(int32(v32), 0) == 1
}
const (
// order is the order of the Fp64 field.
orderP0 = uint64(0xffffffff00000001)
// numRootsUnity is ..
numRootsUnity = 32
// numInverseIntFp64 is the number of precomputed inverses.
numInverseInt = 8
// maxNumTries is the maximum tries for rejection sampling.
maxNumTries = 10
)
var (
// rSquare is R^2 mod Fp64Order, where R=2^64 (little-endian).
rSquare = Fp{0xfffffffe00000001}
// half is 1/2 mod Order.
half = Fp{0x8000000000000000}
// rootOfUnityTwoN are the (principal) roots of unity that generate
// a multiplicative group of order 2^n.
// i.e., rootOfUnityTwoN[i] generates a group of order 2^i.
// Thus, by definition,
// - rootOfUnityTwoN[0] = One
// - rootOfUnityTwoN[numRoots] = Generator
// Constants are encoded in Montgomery domain (little-endian).
rootOfUnityTwoN = [numRootsUnity + 1]Fp{
{0x00000000ffffffff},
{0xfffffffe00000002},
{0xfffffffeffff0001},
{0xfeffffff01000001},
{0x0000000010000000},
{0xffffbfff00000001},
{0xfffffffeffffff81},
{0x07fffffffffff800},
{0xe60ca9645a7a425e},
{0x5c411f4d8ab91088},
{0x8bfed970d671fbb7},
{0x1da1c8cedc0a82b1},
{0x959dfcb4779eb1b1},
{0x35d17996b4e99746},
{0x10bba1e10e56548b},
{0x2306baaae6467556},
{0xbf79450ceba724c2},
{0xaa3d8a0ca9f1cf0a},
{0x05f9beab78de26d9},
{0x8caa33007781b093},
{0x5e93e76c70b1e9c6},
{0x32322652d8cb2ab7},
{0xe67246b3ce63a09e},
{0x36fbc989de66dc62},
{0xc307e16fb62a525e},
{0x6ecfefd745751a91},
{0x78d6e28499e74d1f},
{0x915a171c5dce5b0b},
{0x004a4484a6b1267b},
{0xa46d26647bea105f},
{0xb86a0843c8fa27b2},
{0x5588e6586a6c9a32},
{0xda58878b0d514e98},
}
// inverseInt has the inverse of the first `numInverseInt` integers.
inverseInt = [numInverseInt]Fp{
{0x00000000ffffffff},
{0x8000000000000000},
{0x0000000055555555},
{0x4000000000000000},
{0x0000000033333333},
{0x7fffffffaaaaaaab},
{0x6db6db6d6db6db6e},
{0x2000000000000000},
}
)
var (
ErrMatchLen = errors.New("inputs mismatched length")
ErrFieldEltDecode = errors.New("incorrect field element value")
ErrNumberTooLarge = errors.New("number of bits is not enough to represent the number")
ErrMaxNumTries = errors.New("random rejection sampling reached maximum number of tries")
ErrRootsOfUnity = errors.New("Fp has no roots of unity of order larger than 2^32")
)
|