1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
// Package sum is a VDAF for aggregating integers in a pre-determined range.
package sum
import (
"math/bits"
"github.com/cloudflare/circl/vdaf/prio3/arith/fp64"
"github.com/cloudflare/circl/vdaf/prio3/internal/cursor"
"github.com/cloudflare/circl/vdaf/prio3/internal/flp"
"github.com/cloudflare/circl/vdaf/prio3/internal/prio3"
)
type (
poly = fp64.Poly
Vec = fp64.Vec
Fp = fp64.Fp
AggShare = prio3.AggShare[Vec, Fp]
InputShare = prio3.InputShare[Vec, Fp]
Nonce = prio3.Nonce
OutShare = prio3.OutShare[Vec, Fp]
PrepMessage = prio3.PrepMessage
PrepShare = prio3.PrepShare[Vec, Fp]
PrepState = prio3.PrepState[Vec, Fp]
PublicShare = prio3.PublicShare
VerifyKey = prio3.VerifyKey
)
// Sum is a verifiable distributed aggregation function in which each
// measurement is an integer in the range [0, maxMeasurement], where
// maxMeasurement defines the largest valid measurement, the aggregated result
// is the sum of all the measurements.
type Sum struct {
p prio3.Prio3[uint64, uint64, *flpSum, Vec, Fp, *Fp]
}
func New(numShares uint8, maxMeasurement uint64, context []byte) (s *Sum, err error) {
const sumID = 2
flp, err := newFlpSum(maxMeasurement)
if err != nil {
return nil, err
}
s = new(Sum)
s.p, err = prio3.New(flp, sumID, numShares, context)
if err != nil {
return nil, err
}
return s, nil
}
func (s *Sum) Params() prio3.Params { return s.p.Params() }
func (s *Sum) Shard(measurement uint64, nonce *Nonce, rand []byte,
) (PublicShare, []InputShare, error) {
return s.p.Shard(measurement, nonce, rand)
}
func (s *Sum) PrepInit(
verifyKey *VerifyKey,
nonce *Nonce,
aggID uint8,
publicShare PublicShare,
inputShare InputShare,
) (*PrepState, *PrepShare, error) {
return s.p.PrepInit(verifyKey, nonce, aggID, publicShare, inputShare)
}
func (s *Sum) PrepSharesToPrep(prepShares []PrepShare) (*PrepMessage, error) {
return s.p.PrepSharesToPrep(prepShares)
}
func (s *Sum) PrepNext(state *PrepState, msg *PrepMessage) (*OutShare, error) {
return s.p.PrepNext(state, msg)
}
func (s *Sum) AggregateInit() AggShare { return s.p.AggregateInit() }
func (s *Sum) AggregateUpdate(aggShare *AggShare, outShare *OutShare) {
s.p.AggregateUpdate(aggShare, outShare)
}
func (s *Sum) Unshard(aggShares []AggShare, numMeas uint) (aggregate *uint64, err error) {
return s.p.Unshard(aggShares, numMeas)
}
type flpSum struct {
flp.FLP[flp.GadgetPolyEvalx2x, poly, Vec, Fp, *Fp]
bits uint
offset Fp
}
func newFlpSum(maxMeasurement uint64) (*flpSum, error) {
bits := uint(bits.Len64(maxMeasurement))
offset := (uint64(1) << uint64(bits)) - 1 - maxMeasurement
s := new(flpSum)
s.bits = bits
err := s.offset.SetUint64(offset)
if err != nil {
return nil, err
}
s.Valid.MeasurementLen = 2 * bits
s.Valid.JointRandLen = 0
s.Valid.OutputLen = 1
s.Valid.EvalOutputLen = 2*bits + 1
s.Gadget = flp.GadgetPolyEvalx2x{}
s.NumGadgetCalls = 2 * bits
s.FLP.Eval = s.Eval
return s, nil
}
func (s *flpSum) Eval(
out Vec, g flp.Gadget[poly, Vec, Fp, *Fp], numCalls uint,
meas, jointRand Vec, numShares uint8,
) {
var input [1]Fp
for i := range meas {
input[0] = meas[i]
g.Eval(&out[i], input[:])
}
measCur := cursor.New(meas)
a := measCur.Next(s.bits).JoinBits()
b := measCur.Next(s.bits).JoinBits()
var invShares Fp
invShares.InvUint64(uint64(numShares))
rangeCheck := &out[len(meas)]
rangeCheck.Mul(&s.offset, &invShares)
rangeCheck.AddAssign(&a)
rangeCheck.SubAssign(&b)
}
func (s *flpSum) Encode(measurement uint64) (Vec, error) {
offset, err := s.offset.GetUint64()
if err != nil {
return nil, err
}
out := make(Vec, s.Valid.MeasurementLen)
outCur := cursor.New(out)
err = outCur.Next(s.bits).SplitBits(measurement)
if err != nil {
return nil, err
}
err = outCur.Next(s.bits).SplitBits(measurement + offset)
if err != nil {
return nil, err
}
return out, nil
}
func (s *flpSum) Truncate(meas Vec) Vec {
return Vec{meas[:s.bits].JoinBits()}
}
func (s *flpSum) Decode(output Vec, numMeas uint) (*uint64, error) {
if len(output) < int(s.Valid.OutputLen) {
return nil, flp.ErrOutputLen
}
n, err := output[0].GetUint64()
if err != nil {
return nil, err
}
return &n, nil
}
|