1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Package sumvec is a VDAF for aggregating vectors of integers in a pre-determined range.
package sumvec
import (
"errors"
"github.com/cloudflare/circl/vdaf/prio3/arith"
"github.com/cloudflare/circl/vdaf/prio3/arith/fp128"
"github.com/cloudflare/circl/vdaf/prio3/internal/cursor"
"github.com/cloudflare/circl/vdaf/prio3/internal/flp"
"github.com/cloudflare/circl/vdaf/prio3/internal/prio3"
)
type (
poly = fp128.Poly
Vec = fp128.Vec
Fp = fp128.Fp
AggShare = prio3.AggShare[Vec, Fp]
InputShare = prio3.InputShare[Vec, Fp]
Nonce = prio3.Nonce
OutShare = prio3.OutShare[Vec, Fp]
PrepMessage = prio3.PrepMessage
PrepShare = prio3.PrepShare[Vec, Fp]
PrepState = prio3.PrepState[Vec, Fp]
PublicShare = prio3.PublicShare
VerifyKey = prio3.VerifyKey
)
// SumVec is a verifiable distributed aggregation function in which each
// measurement is a fixed-length vector of integers in the range [0, 2^bits).
// the aggregated result is the sum of all the vectors.
type SumVec struct {
p prio3.Prio3[[]uint64, []uint64, *flpSumVec, Vec, Fp, *Fp]
}
func New(numShares uint8, length, bits, chunkLength uint, context []byte) (s *SumVec, err error) {
const sumVecID = 3
flp, err := newFlpSumVec(length, bits, chunkLength)
if err != nil {
return nil, err
}
s = new(SumVec)
s.p, err = prio3.New(flp, sumVecID, numShares, context)
if err != nil {
return nil, err
}
return s, nil
}
func (s *SumVec) Params() prio3.Params { return s.p.Params() }
func (s *SumVec) Shard(measurement []uint64, nonce *Nonce, rand []byte,
) (PublicShare, []InputShare, error) {
return s.p.Shard(measurement, nonce, rand)
}
func (s *SumVec) PrepInit(
verifyKey *VerifyKey,
nonce *Nonce,
aggID uint8,
publicShare PublicShare,
inputShare InputShare,
) (*PrepState, *PrepShare, error) {
return s.p.PrepInit(verifyKey, nonce, aggID, publicShare, inputShare)
}
func (s *SumVec) PrepSharesToPrep(prepShares []PrepShare) (*PrepMessage, error) {
return s.p.PrepSharesToPrep(prepShares)
}
func (s *SumVec) PrepNext(state *PrepState, msg *PrepMessage) (*OutShare, error) {
return s.p.PrepNext(state, msg)
}
func (s *SumVec) AggregateInit() AggShare { return s.p.AggregateInit() }
func (s *SumVec) AggregateUpdate(aggShare *AggShare, outShare *OutShare) {
s.p.AggregateUpdate(aggShare, outShare)
}
func (s *SumVec) Unshard(aggShares []AggShare, numMeas uint) (aggregate *[]uint64, err error) {
return s.p.Unshard(aggShares, numMeas)
}
type flpSumVec struct {
flp.FLP[flp.GadgetParallelSumInnerMul, poly, Vec, Fp, *Fp]
length uint
bits uint
chunkLen uint
}
func newFlpSumVec(length, bits, chunkLen uint) (*flpSumVec, error) {
if bits > 64 {
return nil, ErrBits
}
numGadgetCalls := (length*bits + chunkLen - 1) / chunkLen
s := new(flpSumVec)
s.length = length
s.bits = bits
s.chunkLen = chunkLen
s.Valid.MeasurementLen = length * bits
s.Valid.JointRandLen = numGadgetCalls
s.Valid.OutputLen = length
s.Valid.EvalOutputLen = 1
s.Gadget = flp.GadgetParallelSumInnerMul{Count: chunkLen}
s.NumGadgetCalls = numGadgetCalls
s.FLP.Eval = s.Eval
return s, nil
}
func (s *flpSumVec) Eval(
out Vec, g flp.Gadget[poly, Vec, Fp, *Fp], numCalls uint,
meas, jointRand Vec, numShares uint8,
) {
var invShares Fp
invShares.InvUint64(uint64(numShares))
out[0] = flp.RangeCheck(g, numCalls, s.chunkLen, &invShares, meas, jointRand)
}
func (s *flpSumVec) Encode(measurement []uint64) (out Vec, err error) {
if len(measurement) != int(s.length) {
return nil, flp.ErrMeasurementLen
}
out = make(Vec, s.Valid.MeasurementLen)
outCur := cursor.New(out)
for i := range measurement {
err = outCur.Next(s.bits).SplitBits(measurement[i])
if err != nil {
return nil, err
}
}
return
}
func (s *flpSumVec) Truncate(meas Vec) (out Vec) {
out = arith.NewVec[Vec](s.length)
measCur := cursor.New(meas)
for i := range out {
out[i] = measCur.Next(s.bits).JoinBits()
}
return
}
func (s *flpSumVec) Decode(output Vec, numMeas uint) (*[]uint64, error) {
if len(output) < int(s.Valid.OutputLen) {
return nil, flp.ErrOutputLen
}
var err error
out := make([]uint64, len(output))
for i := range output {
out[i], err = output[i].GetUint64()
if err != nil {
return nil, err
}
}
return &out, nil
}
var ErrBits = errors.New("bits larger than 64 is not supported")
|