1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// Package ascon provides ASCON family of light-weight AEAD ciphers.
//
// This package implements Ascon128 and Ascon128a two AEAD ciphers as specified
// in ASCON v1.2 by C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer.
// https://ascon.iaik.tugraz.at/index.html
//
// It also implements Ascon-80pq, which has an increased key-size to provide
// more resistance against a quantum adversary using Grover’s algorithm for
// key search. Since Ascon-128 and Ascon-80pq share the same building blocks
// and same parameters except the size of the key, it is claimed the same
// security for Ascon-80pq against classical attacks as for Ascon-128.
package ascon
import (
"crypto/subtle"
"encoding/binary"
"errors"
"math/bits"
)
const (
KeySize = 16 // For Ascon128 and Ascon128a.
KeySize80pq = 20 // Only for Ascon80pq.
NonceSize = 16
TagSize = 16
)
type Mode int
// KeySize is 16 for Ascon128 and Ascon128a, or 20 for Ascon80pq.
func (m Mode) KeySize() int {
switch m {
case Ascon128, Ascon128a, Ascon80pq:
v := int(m) >> 2
return KeySize&^v | KeySize80pq&v
default:
panic(ErrMode)
}
}
func (m Mode) String() string {
switch m {
case Ascon128:
return "Ascon128"
case Ascon128a:
return "Ascon128a"
case Ascon80pq:
return "Ascon80pq"
default:
panic(ErrMode)
}
}
const (
Ascon128 Mode = 1
Ascon128a Mode = 2
Ascon80pq Mode = -1
)
const permA = 12
type Cipher struct {
key [3]uint64
mode Mode
}
// New returns a Cipher struct implementing the crypto/cipher.AEAD interface.
// The key must be Mode.KeySize() bytes long, and the mode is one of Ascon128,
// Ascon128a or Ascon80pq.
func New(key []byte, m Mode) (*Cipher, error) {
if (m == Ascon128 || m == Ascon128a) && len(key) != KeySize {
return nil, ErrKeySize
}
if m == Ascon80pq && len(key) != KeySize80pq {
return nil, ErrKeySize
}
if !(m == Ascon128 || m == Ascon128a || m == Ascon80pq) {
return nil, ErrMode
}
c := new(Cipher)
c.mode = m
if m == Ascon80pq {
c.key[0] = uint64(binary.BigEndian.Uint32(key[0:4]))
c.key[1] = binary.BigEndian.Uint64(key[4:12])
c.key[2] = binary.BigEndian.Uint64(key[12:20])
} else {
c.key[0] = 0
c.key[1] = binary.BigEndian.Uint64(key[0:8])
c.key[2] = binary.BigEndian.Uint64(key[8:16])
}
return c, nil
}
// NonceSize returns the size of the nonce that must be passed to Seal
// and Open.
func (a *Cipher) NonceSize() int { return NonceSize }
// Overhead returns the maximum difference between the lengths of a
// plaintext and its ciphertext.
func (a *Cipher) Overhead() int { return TagSize }
// Seal encrypts and authenticates plaintext, authenticates the
// additional data and appends the result to dst, returning the updated
// slice. The nonce must be NonceSize() bytes long and unique for all
// time, for a given key.
//
// To reuse plaintext's storage for the encrypted output, use plaintext[:0]
// as dst. Otherwise, the remaining capacity of dst must not overlap plaintext.
func (a *Cipher) Seal(dst, nonce, plaintext, additionalData []byte) []byte {
if len(nonce) != NonceSize {
panic(ErrNonceSize)
}
ptLen := len(plaintext)
ret, out := sliceForAppend(dst, ptLen+TagSize)
ciphertext, tag := out[:ptLen], out[ptLen:]
var s [5]uint64
a.initialize(nonce, &s)
a.assocData(additionalData, &s)
a.procText(plaintext, ciphertext, true, &s)
a.finalize(tag, &s)
return ret
}
// Open decrypts and authenticates ciphertext, authenticates the
// additional data and, if successful, appends the resulting plaintext
// to dst, returning the updated slice. The nonce must be NonceSize()
// bytes long and both it and the additional data must match the
// value passed to Seal.
//
// To reuse ciphertext's storage for the decrypted output, use ciphertext[:0]
// as dst. Otherwise, the remaining capacity of dst must not overlap plaintext.
//
// Even if the function fails, the contents of dst, up to its capacity,
// may be overwritten.
func (a *Cipher) Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if len(nonce) != NonceSize {
panic(ErrNonceSize)
}
if len(ciphertext) < TagSize {
return nil, ErrDecryption
}
ptLen := len(ciphertext) - TagSize
ret, out := sliceForAppend(dst, ptLen)
plaintext := out[:ptLen]
ciphertext, tag0 := ciphertext[:ptLen], ciphertext[ptLen:]
tag1 := (&[TagSize]byte{})[:]
var s [5]uint64
a.initialize(nonce, &s)
a.assocData(additionalData, &s)
a.procText(ciphertext, plaintext, false, &s)
a.finalize(tag1, &s)
if subtle.ConstantTimeCompare(tag0, tag1) == 0 {
return nil, ErrDecryption
}
return ret, nil
}
func abs(x int) int { m := uint(x >> (bits.UintSize - 1)); return int((uint(x) + m) ^ m) }
// blockSize = 8 for Ascon128 and Ascon80pq, or 16 for Ascon128a.
func (a *Cipher) blockSize() int { return abs(int(a.mode)) << 3 }
// permB = 6 for Ascon128 and Ascon80pq, or 8 for Ascon128a.
func (a *Cipher) permB() int { return (abs(int(a.mode)) + 2) << 1 }
func (a *Cipher) initialize(nonce []byte, s *[5]uint64) {
bcs := uint64(a.blockSize())
pB := uint64(a.permB())
kS := uint64(a.mode.KeySize())
s[0] = ((kS * 8) << 56) | ((bcs * 8) << 48) | (permA << 40) | (pB << 32) | a.key[0]
s[1] = a.key[1]
s[2] = a.key[2]
s[3] = binary.BigEndian.Uint64(nonce[0:8])
s[4] = binary.BigEndian.Uint64(nonce[8:16])
perm(permA, s)
s[2] ^= a.key[0]
s[3] ^= a.key[1]
s[4] ^= a.key[2]
}
func (a *Cipher) assocData(add []byte, s *[5]uint64) {
bcs := a.blockSize()
pB := a.permB()
if len(add) > 0 {
for ; len(add) >= bcs; add = add[bcs:] {
for i := 0; i < bcs; i += 8 {
s[i/8] ^= binary.BigEndian.Uint64(add[i : i+8])
}
perm(pB, s)
}
for i := 0; i < len(add); i++ {
s[i/8] ^= uint64(add[i]) << (56 - 8*(i%8))
}
s[len(add)/8] ^= uint64(0x80) << (56 - 8*(len(add)%8))
perm(pB, s)
}
s[4] ^= 0x01
}
func (a *Cipher) procText(in, out []byte, enc bool, s *[5]uint64) {
bcs := a.blockSize()
pB := a.permB()
mask := uint64(0)
if enc {
mask -= 1
}
for ; len(in) >= bcs; in, out = in[bcs:], out[bcs:] {
for i := 0; i < bcs; i += 8 {
inW := binary.BigEndian.Uint64(in[i : i+8])
outW := s[i/8] ^ inW
binary.BigEndian.PutUint64(out[i:i+8], outW)
s[i/8] = (inW &^ mask) | (outW & mask)
}
perm(pB, s)
}
mask8 := byte(mask & 0xFF)
for i := 0; i < len(in); i++ {
off := 56 - (8 * (i % 8))
si := byte((s[i/8] >> off) & 0xFF)
inB := in[i]
outB := si ^ inB
out[i] = outB
ss := inB&^mask8 | outB&mask8
s[i/8] = (s[i/8] &^ (0xFF << off)) | uint64(ss)<<off
}
s[len(in)/8] ^= uint64(0x80) << (56 - 8*(len(in)%8))
}
func (a *Cipher) finalize(tag []byte, s *[5]uint64) {
bcs := a.blockSize()
if a.mode == Ascon80pq {
s[bcs/8+0] ^= a.key[0]<<32 | a.key[1]>>32
s[bcs/8+1] ^= a.key[1]<<32 | a.key[2]>>32
s[bcs/8+2] ^= a.key[2] << 32
} else {
s[bcs/8+0] ^= a.key[1]
s[bcs/8+1] ^= a.key[2]
}
perm(permA, s)
binary.BigEndian.PutUint64(tag[0:8], s[3]^a.key[1])
binary.BigEndian.PutUint64(tag[8:16], s[4]^a.key[2])
}
func perm(n int, s *[5]uint64) {
x0, x1, x2, x3, x4 := s[0], s[1], s[2], s[3], s[4]
for i := permA - n; i < permA; i++ {
// pC -- addition of constants
x2 ^= uint64((0xF-i)<<4 | i)
// pS -- substitution layer
// Figure 6 from Spec [DHVV18,Dae18]
// https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
x0 ^= x4
x4 ^= x3
x2 ^= x1
t0 := x0 & (^x4)
t1 := x2 & (^x1)
x0 ^= t1
t1 = x4 & (^x3)
x2 ^= t1
t1 = x1 & (^x0)
x4 ^= t1
t1 = x3 & (^x2)
x1 ^= t1
x3 ^= t0
x1 ^= x0
x3 ^= x2
x0 ^= x4
x2 = ^x2
// pL -- linear diffusion layer
x0 ^= bits.RotateLeft64(x0, -19) ^ bits.RotateLeft64(x0, -28)
x1 ^= bits.RotateLeft64(x1, -61) ^ bits.RotateLeft64(x1, -39)
x2 ^= bits.RotateLeft64(x2, -1) ^ bits.RotateLeft64(x2, -6)
x3 ^= bits.RotateLeft64(x3, -10) ^ bits.RotateLeft64(x3, -17)
x4 ^= bits.RotateLeft64(x4, -7) ^ bits.RotateLeft64(x4, -41)
}
s[0], s[1], s[2], s[3], s[4] = x0, x1, x2, x3, x4
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
var (
ErrKeySize = errors.New("ascon: bad key size")
ErrNonceSize = errors.New("ascon: bad nonce size")
ErrDecryption = errors.New("ascon: invalid ciphertext")
ErrMode = errors.New("ascon: invalid cipher mode")
)
|