1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
package csidh
import (
"io"
)
// 511-bit number representing prime field element GF(p)
type fp [numWords]uint64
// Represents projective point on elliptic curve E over GF(p)
type point struct {
x fp
z fp
}
// Curve coefficients
type coeff struct {
a fp
c fp
}
type fpRngGen struct {
// working buffer needed to avoid memory allocation
wbuf [64]byte
}
// Defines operations on public key
type PublicKey struct {
fpRngGen
// Montgomery coefficient A from GF(p) of the elliptic curve
// y^2 = x^3 + Ax^2 + x.
a fp
}
// Defines operations on private key
type PrivateKey struct {
fpRngGen
// private key is a set of integers randomly
// each sampled from a range [-5, 5].
e [PrivateKeySize]int8
}
// randFp generates random element from Fp.
func (s *fpRngGen) randFp(v *fp, rng io.Reader) {
mask := uint64(1<<(pbits%limbBitSize)) - 1
for {
*v = fp{}
_, err := io.ReadFull(rng, s.wbuf[:])
if err != nil {
panic("Can't read random number")
}
for i := 0; i < len(s.wbuf); i++ {
j := i / limbByteSize
k := uint(i % 8)
v[j] |= uint64(s.wbuf[i]) << (8 * k)
}
v[len(v)-1] &= mask
if isLess(v, &p) {
return
}
}
}
// cofactorMul helper implements batch cofactor multiplication as described
// in the ia.cr/2018/383 (algo. 3). Returns tuple of two booleans, first indicates
// if function has finished successfully. In case first return value is true,
// second return value indicates if curve represented by cofactor 'a' is
// supersingular.
// Implementation uses divide-and-conquer strategy and recursion in order to
// speed up calculation of Q_i = [(p+1)/l_i] * P.
// Implementation is not constant time, but it operates on public data only.
func cofactorMul(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) {
var Q point
var r1, d1, r2, d2 bool
if (halfR - halfL) == 1 {
// base case
if !p.z.isZero() {
tmp := fp{primes[halfL]}
xMul(p, p, a, &tmp)
if !p.z.isZero() {
// order does not divide p+1 -> ordinary curve
return true, false
}
mul512(order, order, primes[halfL])
if isLess(&fourSqrtP, order) {
// order > 4*sqrt(p) -> supersingular curve
return true, true
}
}
return false, false
}
// perform another recursive step
mid := halfL + ((halfR - halfL + 1) / 2)
mulL, mulR := fp{1}, fp{1}
// compute u = primes_1 * ... * primes_m
for i := halfL; i < mid; i++ {
mul512(&mulR, &mulR, primes[i])
}
// compute v = primes_m+1 * ... * primes_n
for i := mid; i < halfR; i++ {
mul512(&mulL, &mulL, primes[i])
}
// calculate Q_i
xMul(&Q, p, a, &mulR)
xMul(p, p, a, &mulL)
d1, r1 = cofactorMul(&Q, a, mid, halfR, order)
d2, r2 = cofactorMul(p, a, halfL, mid, order)
return d1 || d2, r1 || r2
}
// groupAction evaluates group action of prv.e on a Montgomery
// curve represented by coefficient pub.A.
// This is implementation of algorithm 2 from ia.cr/2018/383.
func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
var k [2]fp
var e [2][primeCount]uint8
done := [2]bool{false, false}
A := coeff{a: pub.a, c: one}
k[0][0] = 4
k[1][0] = 4
for i, v := range primes {
t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4
if t > 0 {
e[0][i] = uint8(t)
e[1][i] = 0
mul512(&k[1], &k[1], v)
} else if t < 0 {
e[1][i] = uint8(-t)
e[0][i] = 0
mul512(&k[0], &k[0], v)
} else {
e[0][i] = 0
e[1][i] = 0
mul512(&k[0], &k[0], v)
mul512(&k[1], &k[1], v)
}
}
for {
var P point
var rhs fp
prv.randFp(&P.x, rng)
P.z = one
montEval(&rhs, &A.a, &P.x)
sign := rhs.isNonQuadRes()
if done[sign] {
continue
}
xMul(&P, &P, &A, &k[sign])
done[sign] = true
for i, v := range primes {
if e[sign][i] != 0 {
cof := fp{1}
var K point
for j := i + 1; j < len(primes); j++ {
if e[sign][j] != 0 {
mul512(&cof, &cof, primes[j])
}
}
xMul(&K, &P, &A, &cof)
if !K.z.isZero() {
xIso(&P, &A, &K, v)
e[sign][i] = e[sign][i] - 1
if e[sign][i] == 0 {
mul512(&k[sign], &k[sign], primes[i])
}
}
}
done[sign] = done[sign] && (e[sign][i] == 0)
}
modExpRdc512(&A.c, &A.c, &pMin1)
mulRdc(&A.a, &A.a, &A.c)
A.c = one
if done[0] && done[1] {
break
}
}
pub.a = A.a
}
// PrivateKey operations
func (c *PrivateKey) Import(key []byte) bool {
if len(key) < len(c.e) {
return false
}
for i, v := range key {
c.e[i] = int8(v)
}
return true
}
func (c PrivateKey) Export(out []byte) bool {
if len(out) < len(c.e) {
return false
}
for i, v := range c.e {
out[i] = byte(v)
}
return true
}
func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error {
for i := range key.e {
key.e[i] = 0
}
for i := 0; i < len(primes); {
_, err := io.ReadFull(rng, key.wbuf[:])
if err != nil {
return err
}
for j := range key.wbuf {
if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax {
key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4))
i = i + 1
if i == len(primes) {
break
}
}
}
}
return nil
}
// Public key operations
// reset removes key material from PublicKey.
func (c *PublicKey) reset() {
for i := range c.a {
c.a[i] = 0
}
}
// Assumes key is in Montgomery domain.
func (c *PublicKey) Import(key []byte) bool {
if len(key) != numWords*limbByteSize {
return false
}
for i := 0; i < len(key); i++ {
j := i / limbByteSize
k := uint64(i % 8)
c.a[j] |= uint64(key[i]) << (8 * k)
}
return true
}
// Assumes key is exported as encoded in Montgomery domain.
func (c *PublicKey) Export(out []byte) bool {
if len(out) != numWords*limbByteSize {
return false
}
for i := 0; i < len(out); i++ {
j := i / limbByteSize
k := uint64(i % 8)
out[i] = byte(c.a[j] >> (8 * k))
}
return true
}
func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
pub.reset()
groupAction(pub, prv, rng)
}
// Validate returns true if 'pub' is a valid cSIDH public key,
// otherwise false.
// More precisely, the function verifies that curve
//
// y^2 = x^3 + pub.a * x^2 + x
//
// is supersingular.
func Validate(pub *PublicKey, rng io.Reader) bool {
// Check if in range
if !isLess(&pub.a, &p) {
return false
}
// Check if pub represents a smooth Montgomery curve.
if pub.a.equal(&two) || pub.a.equal(&twoNeg) {
return false
}
// Check if pub represents a supersingular curve.
for {
var P point
A := point{pub.a, one}
// Randomly chosen P must have big enough order to check
// supersingularity. Probability of random P having big
// enough order is very high, as proven by W.Castryck et
// al. (ia.cr/2018/383, ch 5)
pub.randFp(&P.x, rng)
P.z = one
xDbl(&P, &P, &A)
xDbl(&P, &P, &A)
done, res := cofactorMul(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1})
if done {
return res
}
}
}
// DeriveSecret computes a cSIDH shared secret. If successful, returns true
// and fills 'out' with shared secret. Function returns false in case 'pub' is invalid.
// More precisely, shared secret is a Montgomery coefficient A of a secret
// curve y^2 = x^3 + Ax^2 + x, computed by applying action of a prv.e
// on a curve represented by pub.a.
func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool {
if !Validate(pub, rng) {
return false
}
groupAction(pub, prv, rng)
pub.Export(out[:])
return true
}
|