1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
package csidh
import (
"bytes"
"crypto/rand"
"encoding/binary"
"encoding/hex"
"encoding/json"
"os"
"testing"
. "github.com/cloudflare/circl/internal/test"
)
// Possible values for "Status"
const (
Valid = iota // Indicates that shared secret must be agreed correctly
ValidPublicKey2 // Public key 2 must succeed validation
InvalidSharedSecret // Calculated shared secret must be different than test vector
InvalidPublicKey1 // Public key 1 generated from private key must be different than test vector
InvalidPublicKey2 // Public key 2 must fail validation
)
var StatusValues = map[int]string{
Valid: "valid",
ValidPublicKey2: "valid_public_key2",
InvalidSharedSecret: "invalid_shared_secret",
InvalidPublicKey1: "invalid_public_key1",
InvalidPublicKey2: "invalid_public_key2",
}
var rng = rand.Reader
type TestVector struct {
ID int `json:"Id"`
Pk1 string `json:"Pk1"`
Pr1 string `json:"Pr1"`
Pk2 string `json:"Pk2"`
Ss string `json:"Ss"`
Status string `json:"status"`
}
type TestVectors struct {
Vectors []TestVector `json:"Vectors"`
}
func TestCompare64(t *testing.T) {
const s uint64 = 0xFFFFFFFFFFFFFFFF
val1 := fp{0, 2, 3, 4, 5, 6, 7, 8}
val2 := fp{s, s, s, s, s, s, s, s}
var zero fp
if !zero.isZero() {
t.Errorf("isZero returned true, where it should be false")
}
if val1.isZero() {
t.Errorf("isZero returned false, where it should be true")
}
if val2.isZero() {
t.Errorf("isZero returned false, where it should be true")
}
}
func TestEphemeralKeyExchange(t *testing.T) {
var ss1, ss2 [64]byte
var prv1, prv2 PrivateKey
var pub1, pub2 PublicKey
prvBytes1 := []byte{0xaa, 0x54, 0xe4, 0xd4, 0xd0, 0xbd, 0xee, 0xcb, 0xf4, 0xd0, 0xc2, 0xbc, 0x52, 0x44, 0x11, 0xee, 0xe1, 0x14, 0xd2, 0x24, 0xe5, 0x0, 0xcc, 0xf5, 0xc0, 0xe1, 0x1e, 0xb3, 0x43, 0x52, 0x45, 0xbe, 0xfb, 0x54, 0xc0, 0x55, 0xb2}
prv1.Import(prvBytes1)
GeneratePublicKey(&pub1, &prv1, rng)
CheckNoErr(t, GeneratePrivateKey(&prv2, rng), "PrivateKey generation failed")
GeneratePublicKey(&pub2, &prv2, rng)
CheckOk(
DeriveSecret(&ss1, &pub1, &prv2, rng),
"Derivation failed", t)
CheckOk(
DeriveSecret(&ss2, &pub2, &prv1, rng),
"Derivation failed", t)
if !bytes.Equal(ss1[:], ss2[:]) {
t.Error("ss1 != ss2")
}
}
func TestPrivateKeyExportImport(t *testing.T) {
var buf [37]byte
for i := 0; i < numIter; i++ {
var prv1, prv2 PrivateKey
CheckNoErr(t, GeneratePrivateKey(&prv1, rng), "PrivateKey generation failed")
prv1.Export(buf[:])
prv2.Import(buf[:])
for i := 0; i < len(prv1.e); i++ {
if prv1.e[i] != prv2.e[i] {
t.Error("Error occurred when public key export/import")
}
}
}
}
func TestValidateNegative(t *testing.T) {
pk := PublicKey{a: p}
pk.a[0]++
if Validate(&pk, rng) {
t.Error("Public key > p has been validated")
}
pk = PublicKey{a: p}
if Validate(&pk, rng) {
t.Error("Public key == p has been validated")
}
pk = PublicKey{a: two}
if Validate(&pk, rng) {
t.Error("Public key == 2 has been validated")
}
pk = PublicKey{a: twoNeg}
if Validate(&pk, rng) {
t.Error("Public key == -2 has been validated")
}
}
func TestPublicKeyExportImport(t *testing.T) {
var buf [64]byte
eq64 := func(x, y []uint64) bool {
for i := range x {
if x[i] != y[i] {
return false
}
}
return true
}
for i := 0; i < numIter; i++ {
var prv PrivateKey
var pub1, pub2 PublicKey
CheckNoErr(t, GeneratePrivateKey(&prv, rng), "PrivateKey generation failed")
GeneratePublicKey(&pub1, &prv, rng)
pub1.Export(buf[:])
pub2.Import(buf[:])
if !eq64(pub1.a[:], pub2.a[:]) {
t.Error("Error occurred when public key export/import")
}
}
}
// Test vectors generated by reference implementation.
func TestKAT(t *testing.T) {
var tests TestVectors
// Helper checks if e==true and reports an error if not.
checkExpr := func(e bool, vec *TestVector, t *testing.T, msg string) {
t.Helper()
if !e {
t.Errorf("[Test ID=%d] "+msg, vec.ID)
}
}
// checkSharedSecret implements nominal case - imports asymmetric keys for
// both parties, derives secret key and compares it to value in test vector.
// Comparison must succeed in case status is "Valid" in any other case
// it must fail.
checkSharedSecret := func(vec *TestVector, t *testing.T, status int) {
var prv1 PrivateKey
var pub1, pub2 PublicKey
var ss [SharedSecretSize]byte
prBuf, err := hex.DecodeString(vec.Pr1)
if err != nil {
t.Fatal(err)
}
checkExpr(prv1.Import(prBuf[:]), vec, t, "PrivateKey wrong")
pkBuf, err := hex.DecodeString(vec.Pk1)
if err != nil {
t.Fatal(err)
}
checkExpr(pub1.Import(pkBuf[:]), vec, t, "PublicKey 1 wrong")
pkBuf, err = hex.DecodeString(vec.Pk2)
if err != nil {
t.Fatal(err)
}
checkExpr(pub2.Import(pkBuf[:]), vec, t, "PublicKey 2 wrong")
checkExpr(DeriveSecret(&ss, &pub2, &prv1, rng), vec, t, "Error when deriving key")
ssExp, err := hex.DecodeString(vec.Ss)
if err != nil {
t.Fatal(err)
}
checkExpr(bytes.Equal(ss[:], ssExp) == (status == Valid), vec, t, "Unexpected value of shared secret")
}
// checkPublicKey1 imports public and private key for one party A
// and tries to generate public key for a private key. After that
// it compares generated key to a key from test vector. Comparison
// must fail.
checkPublicKey1 := func(vec *TestVector, t *testing.T) {
var prv PrivateKey
var pub PublicKey
var pubBytesGot [PublicKeySize]byte
prBuf, err := hex.DecodeString(vec.Pr1)
if err != nil {
t.Fatal(err)
}
pubBytesExp, err := hex.DecodeString(vec.Pk1)
if err != nil {
t.Fatal(err)
}
checkExpr(
prv.Import(prBuf[:]),
vec, t, "PrivateKey wrong")
// Generate public key
CheckNoErr(t, GeneratePrivateKey(&prv, rng), "PrivateKey generation failed")
pub.Export(pubBytesGot[:])
// pubBytesGot must be different than pubBytesExp
checkExpr(
!bytes.Equal(pubBytesGot[:], pubBytesExp),
vec, t, "Public key generated is the same as public key from the test vector")
}
// checkPublicKey2 the goal is to test key validation. Test tries to
// import public key for B and ensure that import succeeds in case
// status is "Valid" and fails otherwise.
checkPublicKey2 := func(vec *TestVector, t *testing.T, status int) {
var pub PublicKey
pubBytesExp, err := hex.DecodeString(vec.Pk2)
if err != nil {
t.Fatal(err)
}
// Import validates an input, so it must fail
pub.Import(pubBytesExp[:])
checkExpr(
Validate(&pub, rng) == (status == Valid || status == ValidPublicKey2),
vec, t, "PublicKey has been validated correctly")
}
// Load test data
file, err := os.Open(katFile)
if err != nil {
t.Fatal(err.Error())
}
err = json.NewDecoder(file).Decode(&tests)
if err != nil {
t.Fatal(err.Error())
}
// Loop over numIter test cases
// The algorithm is relatively slow, so it tests a smaller number.
N := len(tests.Vectors)
var buf [2]byte
for i := 0; i < numIter; i++ {
_, _ = rand.Read(buf[:])
idx := binary.LittleEndian.Uint16(buf[:]) % uint16(N)
test := tests.Vectors[idx]
switch test.Status {
case StatusValues[Valid]:
checkSharedSecret(&test, t, Valid)
checkPublicKey2(&test, t, Valid)
case StatusValues[InvalidSharedSecret]:
checkSharedSecret(&test, t, InvalidSharedSecret)
case StatusValues[InvalidPublicKey1]:
checkPublicKey1(&test, t)
case StatusValues[InvalidPublicKey2]:
checkPublicKey2(&test, t, InvalidPublicKey2)
case StatusValues[InvalidPublicKey2]:
checkPublicKey2(&test, t, InvalidPublicKey2)
case StatusValues[ValidPublicKey2]:
checkPublicKey2(&test, t, ValidPublicKey2)
}
}
}
var (
prv1, prv2 PrivateKey
pub1, pub2 PublicKey
)
// Private key generation.
func BenchmarkGeneratePrivate(b *testing.B) {
for n := 0; n < b.N; n++ {
_ = GeneratePrivateKey(&prv1, rng)
}
}
// Public key generation from private (group action on empty key).
func BenchmarkGenerateKeyPair(b *testing.B) {
for n := 0; n < b.N; n++ {
var pub PublicKey
_ = GeneratePrivateKey(&prv1, rng)
GeneratePublicKey(&pub, &prv1, rng)
}
}
// Benchmark validation on same key multiple times.
func BenchmarkValidate(b *testing.B) {
prvBytes := []byte{0xaa, 0x54, 0xe4, 0xd4, 0xd0, 0xbd, 0xee, 0xcb, 0xf4, 0xd0, 0xc2, 0xbc, 0x52, 0x44, 0x11, 0xee, 0xe1, 0x14, 0xd2, 0x24, 0xe5, 0x0, 0xcc, 0xf5, 0xc0, 0xe1, 0x1e, 0xb3, 0x43, 0x52, 0x45, 0xbe, 0xfb, 0x54, 0xc0, 0x55, 0xb2}
prv1.Import(prvBytes)
var pub PublicKey
GeneratePublicKey(&pub, &prv1, rng)
for n := 0; n < b.N; n++ {
Validate(&pub, rng)
}
}
// Benchmark validation on random (most probably wrong) key.
func BenchmarkValidateRandom(b *testing.B) {
var tmp [64]byte
var pub PublicKey
// Initialize seed
for n := 0; n < b.N; n++ {
if _, err := rng.Read(tmp[:]); err != nil {
b.FailNow()
}
pub.Import(tmp[:])
}
}
// Benchmark validation on different keys.
func BenchmarkValidateGenerated(b *testing.B) {
for n := 0; n < b.N; n++ {
_ = GeneratePrivateKey(&prv1, rng)
GeneratePublicKey(&pub1, &prv1, rng)
Validate(&pub1, rng)
}
}
// Generate some keys and benchmark derive.
func BenchmarkDerive(b *testing.B) {
var ss [64]byte
_ = GeneratePrivateKey(&prv1, rng)
GeneratePublicKey(&pub1, &prv1, rng)
_ = GeneratePrivateKey(&prv2, rng)
GeneratePublicKey(&pub2, &prv2, rng)
b.ResetTimer()
for n := 0; n < b.N; n++ {
DeriveSecret(&ss, &pub2, &prv1, rng)
}
}
// Benchmarks both - key generation and derivation.
func BenchmarkDeriveGenerated(b *testing.B) {
var ss [64]byte
for n := 0; n < b.N; n++ {
_ = GeneratePrivateKey(&prv1, rng)
GeneratePublicKey(&pub1, &prv1, rng)
_ = GeneratePrivateKey(&prv2, rng)
GeneratePublicKey(&pub2, &prv2, rng)
DeriveSecret(&ss, &pub2, &prv1, rng)
}
}
|