1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
package csidh
import (
"math/bits"
)
// Constant time select.
// if pick == 0xFF..FF (out = in1)
// if pick == 0 (out = in2)
// else out is undefined.
func ctPick64(which uint64, in1, in2 uint64) uint64 {
return (in1 & which) | (in2 & ^which)
}
// ctIsNonZero64 returns 0 in case i == 0, otherwise it returns 1.
// Constant-time.
func ctIsNonZero64(i uint64) int {
// In case i==0 then i-1 will set MSB. Only in such case (i OR ~(i-1))
// will result in MSB being not set (logical implication: (i-1)=>i is
// false iff (i-1)==0 and i==non-zero). In every other case MSB is
// set and hence function returns 1.
return int((i | (^(i - 1))) >> 63)
}
// Returns result of x<y operation.
func isLess(x, y *fp) bool {
for i := numWords - 1; i >= 0; i-- {
v, c := bits.Sub64(y[i], x[i], 0)
if c != 0 {
return false
}
if v != 0 {
return true
}
}
// x == y
return false
}
// r = x + y mod p.
func addRdc(r, x, y *fp) {
var c uint64
var t fp
r[0], c = bits.Add64(x[0], y[0], 0)
r[1], c = bits.Add64(x[1], y[1], c)
r[2], c = bits.Add64(x[2], y[2], c)
r[3], c = bits.Add64(x[3], y[3], c)
r[4], c = bits.Add64(x[4], y[4], c)
r[5], c = bits.Add64(x[5], y[5], c)
r[6], c = bits.Add64(x[6], y[6], c)
r[7], _ = bits.Add64(x[7], y[7], c)
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// r = x - y.
func sub512(r, x, y *fp) uint64 {
var c uint64
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
return c
}
// r = x - y mod p.
func subRdc(r, x, y *fp) {
var c uint64
// Same as sub512(r,x,y). Unfortunately
// compiler is not able to inline it.
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
// if x<y => r=x-y+p
w := 0 - c
r[0], c = bits.Add64(r[0], ctPick64(w, p[0], 0), 0)
r[1], c = bits.Add64(r[1], ctPick64(w, p[1], 0), c)
r[2], c = bits.Add64(r[2], ctPick64(w, p[2], 0), c)
r[3], c = bits.Add64(r[3], ctPick64(w, p[3], 0), c)
r[4], c = bits.Add64(r[4], ctPick64(w, p[4], 0), c)
r[5], c = bits.Add64(r[5], ctPick64(w, p[5], 0), c)
r[6], c = bits.Add64(r[6], ctPick64(w, p[6], 0), c)
r[7], _ = bits.Add64(r[7], ctPick64(w, p[7], 0), c)
}
// Fixed-window mod exp for fpBitLen bit value with 4 bit window. Returned
// result is a number in montgomery domain.
// r = b ^ e (mod p).
// Constant time.
func modExpRdcCommon(r, b, e *fp, fpBitLen int) {
var precomp [16]fp
var t fp
var c uint64
// Precompute step, computes an array of small powers of 'b'. As this
// algorithm implements 4-bit window, we need 2^4=16 of such values.
// b^0 = 1, which is equal to R from REDC.
precomp[0] = one // b ^ 0
precomp[1] = *b // b ^ 1
for i := 2; i < 16; i = i + 2 {
// OPTIMIZE: implement fast squaring. Then interleaving fast squaring
// with multiplication should improve performance.
mulRdc(&precomp[i], &precomp[i/2], &precomp[i/2]) // sqr
mulRdc(&precomp[i+1], &precomp[i], b)
}
*r = one
for i := fpBitLen/4 - 1; i >= 0; i-- {
for j := 0; j < 4; j++ {
mulRdc(r, r, r)
}
// note: non resistant to cache SCA
idx := (e[i/16] >> uint((i%16)*4)) & 15
mulRdc(r, r, &precomp[idx])
}
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// modExpRdc does modular exponentiation of 512-bit number.
// Constant-time.
func modExpRdc512(r, b, e *fp) {
modExpRdcCommon(r, b, e, 512)
}
// modExpRdc does modular exponentiation of 64-bit number.
// Constant-time.
func modExpRdc64(r, b *fp, e uint64) {
modExpRdcCommon(r, b, &fp{e}, 64)
}
// isNonQuadRes checks whether value v is quadratic residue.
// Implementation uses Fermat's little theorem (or
// Euler's criterion)
//
// a^(p-1) == 1, hence
// (a^2) ((p-1)/2) == 1
//
// Which means v is a quadratic residue iff v^((p-1)/2) == 1.
// Caller provided v must be in montgomery domain.
// Returns 0 in case v is quadratic residue or 1 in case
// v is quadratic non-residue.
func (v *fp) isNonQuadRes() int {
var res fp
var b uint64
modExpRdc512(&res, v, &pMin1By2)
for i := range res {
b |= res[i] ^ one[i]
}
return ctIsNonZero64(b)
}
// isZero returns false in case v is equal to 0, otherwise
// true. Constant time.
func (v *fp) isZero() bool {
var r uint64
for i := 0; i < numWords; i++ {
r |= v[i]
}
return ctIsNonZero64(r) == 0
}
// equal checks if v is equal to in. Constant time.
func (v *fp) equal(in *fp) bool {
var r uint64
for i := range v {
r |= v[i] ^ in[i]
}
return ctIsNonZero64(r) == 0
}
|