1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
package csidh
import "math/bits"
// mul576 implements schoolbook multiplication of
// 64x512-bit integer. Returns result modulo 2^512.
// r = m1*m2.
func mul512Generic(r, m1 *fp, m2 uint64) {
var c, h, l uint64
c, r[0] = bits.Mul64(m2, m1[0])
h, l = bits.Mul64(m2, m1[1])
r[1], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[2])
r[2], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[3])
r[3], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[4])
r[4], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[5])
r[5], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[6])
r[6], c = bits.Add64(l, c, 0)
c = h + c
_, l = bits.Mul64(m2, m1[7])
r[7], _ = bits.Add64(l, c, 0)
}
// mul576 implements schoolbook multiplication of
// 64x512-bit integer. Returns 576-bit result of
// multiplication.
// r = m1*m2.
func mul576Generic(r *[9]uint64, m1 *fp, m2 uint64) {
var c, h, l uint64
c, r[0] = bits.Mul64(m2, m1[0])
h, l = bits.Mul64(m2, m1[1])
r[1], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[2])
r[2], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[3])
r[3], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[4])
r[4], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[5])
r[5], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[6])
r[6], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[7])
r[7], c = bits.Add64(l, c, 0)
r[8], c = bits.Add64(h, c, 0)
r[8] += c
}
// cswap512 implements constant time swap operation.
// If choice = 0, leave x,y unchanged. If choice = 1, set x,y = y,x.
// If choice is neither 0 nor 1 then behaviour is undefined.
func cswap512Generic(x, y *fp, choice uint8) {
var tmp uint64
mask64 := 0 - uint64(choice)
for i := 0; i < numWords; i++ {
tmp = mask64 & (x[i] ^ y[i])
x[i] = tmp ^ x[i]
y[i] = tmp ^ y[i]
}
}
// mulRdc performs montgomery multiplication r = x * y mod P.
// Returned result r is already reduced and in Montgomery domain.
func mulRdcGeneric(r, x, y *fp) {
var t fp
var c uint64
mulGeneric(r, x, y)
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
func mulGeneric(r, x, y *fp) {
var s fp // keeps intermediate results
var t1, t2 [9]uint64
var c, q uint64
for i := 0; i < numWords-1; i++ {
q = ((x[i] * y[0]) + s[0]) * pNegInv[0]
mul576Generic(&t1, &p, q)
mul576Generic(&t2, y, x[i])
// x[i]*y + q_i*p
t1[0], c = bits.Add64(t1[0], t2[0], 0)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
// s = (s + x[i]*y + q_i * p) / R
_, c = bits.Add64(t1[0], s[0], 0)
s[0], c = bits.Add64(t1[1], s[1], c)
s[1], c = bits.Add64(t1[2], s[2], c)
s[2], c = bits.Add64(t1[3], s[3], c)
s[3], c = bits.Add64(t1[4], s[4], c)
s[4], c = bits.Add64(t1[5], s[5], c)
s[5], c = bits.Add64(t1[6], s[6], c)
s[6], c = bits.Add64(t1[7], s[7], c)
s[7], _ = bits.Add64(t1[8], 0, c)
}
// last iteration stores result in r
q = ((x[numWords-1] * y[0]) + s[0]) * pNegInv[0]
mul576Generic(&t1, &p, q)
mul576Generic(&t2, y, x[numWords-1])
t1[0], c = bits.Add64(t1[0], t2[0], c)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
_, c = bits.Add64(t1[0], s[0], 0)
r[0], c = bits.Add64(t1[1], s[1], c)
r[1], c = bits.Add64(t1[2], s[2], c)
r[2], c = bits.Add64(t1[3], s[3], c)
r[3], c = bits.Add64(t1[4], s[4], c)
r[4], c = bits.Add64(t1[5], s[5], c)
r[5], c = bits.Add64(t1[6], s[6], c)
r[6], c = bits.Add64(t1[7], s[7], c)
r[7], _ = bits.Add64(t1[8], 0, c)
}
|