1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package p503
import (
"bytes"
crand "crypto/rand"
. "github.com/cloudflare/circl/dh/sidh/internal/common"
"io"
"math"
"math/rand"
"testing"
"time"
)
func vartimeEqProjFp2(lhs, rhs *ProjectivePoint) bool {
var t0, t1 Fp2
mul(&t0, &lhs.X, &rhs.Z)
mul(&t1, &lhs.Z, &rhs.X)
return vartimeEqFp2(&t0, &t1)
}
func toAffine(point *ProjectivePoint) *Fp2 {
var affineX Fp2
inv(&affineX, &point.Z)
mul(&affineX, &affineX, &point.X)
return &affineX
}
func Test_jInvariant(t *testing.T) {
curve := ProjectiveCurveParameters{A: curveA, C: curveC}
jbufRes := make([]byte, params.SharedSecretSize)
jbufExp := make([]byte, params.SharedSecretSize)
var jInv Fp2
Jinvariant(&curve, &jInv)
FromMontgomery(&jInv, &jInv)
Fp2ToBytes(jbufRes, &jInv, params.Bytelen)
jInv = expectedJ
FromMontgomery(&jInv, &jInv)
Fp2ToBytes(jbufExp, &jInv, params.Bytelen)
if !bytes.Equal(jbufRes[:], jbufExp[:]) {
t.Error("Computed incorrect j-invariant: found\n", jbufRes, "\nexpected\n", jbufExp)
}
}
func TestProjectivePointVartimeEq(t *testing.T) {
var xP ProjectivePoint
xP = ProjectivePoint{X: affineXP, Z: params.OneFp2}
xQ := xP
// Scale xQ, which results in the same projective point
mul(&xQ.X, &xQ.X, &curveA)
mul(&xQ.Z, &xQ.Z, &curveA)
if !vartimeEqProjFp2(&xP, &xQ) {
t.Error("Expected the scaled point to be equal to the original")
}
}
func TestPointMulVersusSage(t *testing.T) {
curve := ProjectiveCurveParameters{A: curveA, C: curveC}
cparams := CalcCurveParamsEquiv4(&curve)
var xP ProjectivePoint
// x 2
xP = ProjectivePoint{X: affineXP, Z: params.OneFp2}
Pow2k(&xP, &cparams, 1)
afxQ := toAffine(&xP)
if !vartimeEqFp2(afxQ, &affineXP2) {
t.Error("\nExpected\n", affineXP2, "\nfound\n", afxQ)
}
// x 4
xP = ProjectivePoint{X: affineXP, Z: params.OneFp2}
Pow2k(&xP, &cparams, 2)
afxQ = toAffine(&xP)
if !vartimeEqFp2(afxQ, &affineXP4) {
t.Error("\nExpected\n", affineXP4, "\nfound\n", afxQ)
}
}
func TestPointMul9VersusSage(t *testing.T) {
curve := ProjectiveCurveParameters{A: curveA, C: curveC}
cparams := CalcCurveParamsEquiv3(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affineXP, Z: params.OneFp2}
Pow3k(&xP, &cparams, 2)
afxQ := toAffine(&xP)
if !vartimeEqFp2(afxQ, &affineXP9) {
t.Error("\nExpected\n", affineXP9, "\nfound\n", afxQ)
}
}
func BenchmarkThreePointLadder(b *testing.B) {
curve := ProjectiveCurveParameters{A: curveA, C: curveC}
for n := 0; n < b.N; n++ {
ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(scalar3Pt)*8), scalar3Pt[:])
}
}
/* -------------------------------------------------------------------------
Generate invalid public key points / ciphertext for test TestKEMInvalidPK
-------------------------------------------------------------------------*/
// Left-to-right Montgomery ladder, Algorithm 4 in Costello-Smith
// Input: ProjectivePoint P (xP, zP)
// Output: x([scalar]P), z([scalar]P)
func montgomeryLadder(cparams *ProjectiveCurveParameters, P *ProjectivePoint, scalar []uint8, random uint) ProjectivePoint {
var R0, R2, R1 ProjectivePoint
coefEq := CalcCurveParamsEquiv4(cparams) // for xDbl
aPlus2Over4 := CalcAplus2Over4(cparams) // for xDblAdd
R0 = *P // RO <- P
R1 = *P
Pow2k(&R1, &coefEq, 1) // R1 <- [2]P
R2 = *P // R2 = R1-R0 = P
prevBit := uint8(0)
for i := int(random); i >= 0; i-- {
bit := (scalar[i>>3] >> (i & 7) & 1)
swap := prevBit ^ bit
prevBit = bit
cswap(&R0.X, &R0.Z, &R1.X, &R1.Z, swap)
R0, R1 = xDbladd(&R0, &R1, &R2, &aPlus2Over4)
}
cswap(&R0.X, &R0.Z, &R1.X, &R1.Z, prevBit)
return R0
}
// P = P + T
// From paper https://eprint.iacr.org/2017/212.pdf
// The map tau_T: P->P+T is (X : Z) -> (Z : X) on Montgomery curves
func tauT(P *ProjectivePoint) {
P.X, P.Z = P.Z, P.X // magic!
}
// Construct Invalid public key tuple (P,Q) such that P and Q are linearly dependent
// Simulate section 3.1.1 of paper https://eprint.iacr.org/2022/054.pdf
// We only construct point P and Q because in the attacks the third point is P-Q by construction
// and the countermeasure does not test it
// Without loss of generality, we assume the curve is the starting curve
func testInvalidPKNoneLinear(t *testing.T) {
// Generate random scalar as secret
secret := make([]byte, params.B.SecretByteLen)
_, err := io.ReadFull(crand.Reader, secret)
if err != nil {
t.Error("Fail read random bytes")
}
var P, Q ProjectivePoint
rand.Seed(time.Now().UnixNano())
random_index := rand.Intn(int(params.B.SecretByteLen-1) * 8)
// Set P as a point of order 3^e3
P = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
// Set Q = [k]P, where k = secret[:random_index]
Q = montgomeryLadder(¶ms.InitCurve, &P, secret, uint(random_index))
// Make sure Q is of full order 3^e_3,
var test_Q ProjectivePoint
test_Q = Q
var e3 uint32
e3_float := float64(int(params.B.SecretBitLen)+1) / math.Log2(3)
e3 = uint32(e3_float)
cparam_q := CalcCurveParamsEquiv3(¶ms.InitCurve)
Pow3k(&test_Q, &cparam_q, e3-1)
var test_QZ Fp2
FromMontgomery(&test_QZ, &test_Q.Z)
// Q are not of full order 3^e_3
for isZero(&test_QZ) == 1 {
rand.Seed(time.Now().UnixNano())
random_index = rand.Intn(int(params.B.SecretByteLen-1) * 8)
Q = montgomeryLadder(¶ms.InitCurve, &P, secret, uint(random_index))
test_Q = Q
Pow3k(&test_Q, &cparam_q, e3-1)
FromMontgomery(&test_QZ, &test_Q.Z)
}
// invQz = 1/Q.Z
var invQz Fp2
invQz = Q.Z
inv(&invQz, &invQz)
mul(&P.X, &P.X, &P.Z)
mul(&Q.X, &Q.X, &invQz)
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: P.X, Z: params.OneFp2}
xQ = ProjectivePoint{X: Q.X, Z: params.OneFp2}
xQmP = ProjectivePoint{X: params.OneFp2, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify == nil {
t.Errorf("\nExpect linearly dependent ciphertext to fail, index: %v scalar: %v ", random_index, secret)
}
}
// Construct Invalid public key tuple (P,Q) such that Q = [k]P + T, where k is random and T is the point of order 2.
// Simulate HB and section 3.1.2 of paper https://eprint.iacr.org/2022/054.pdf
// We only construct point P and Q because in the attacks the third point is P-Q by construction
// and the countermeasure does not test it
// Without loss of generality, we assume the curve is the starting curve
func testInvalidPKT(t *testing.T) {
// Generate random scalar as secret
secret := make([]byte, params.B.SecretByteLen)
_, err := io.ReadFull(crand.Reader, secret)
if err != nil {
t.Error("Fail read random bytes")
}
var P, Q ProjectivePoint
rand.Seed(time.Now().UnixNano())
random_index := rand.Intn(int(params.B.SecretByteLen-1) * 8)
// Set P as a point of order 3^e3
P = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
// Set Q = [k]P, where k = secret[:random_index]
Q = montgomeryLadder(¶ms.InitCurve, &P, secret, uint(random_index))
// Q = [k]P + T
tauT(&Q)
var invQz Fp2
invQz = Q.Z
inv(&invQz, &invQz)
mul(&P.X, &P.X, &P.Z)
mul(&Q.X, &Q.X, &invQz)
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: P.X, Z: params.OneFp2}
xQ = ProjectivePoint{X: Q.X, Z: params.OneFp2}
xQmP = ProjectivePoint{X: params.OneFp2, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify == nil {
t.Errorf("\nExpect ciphertext involve point T to fail, index: %v scalar: %v ", random_index, secret)
}
}
// Construct Invalid public key tuple (P,Q) such that P and Q are in E[2^e2]
// Simulate section 3.2 of paper https://eprint.iacr.org/2022/054.pdf
// We only construct point P and Q because in the attacks the third point is P-Q by construction
// and the countermeasure does not test it
// Without loss of generality, we assume the curve is the starting curve
func testInvalidPKOrder2(t *testing.T) {
// Generate random scalar as secret
secret := make([]byte, params.B.SecretByteLen)
_, err := io.ReadFull(crand.Reader, secret)
if err != nil {
t.Error("Fail read random bytes")
}
var P, Q ProjectivePoint
P = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2}
Q = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2}
rand.Seed(time.Now().UnixNano())
random_index_p := rand.Intn(int(params.A.SecretByteLen-1) * 8)
random_index_q := rand.Intn(int(params.A.SecretByteLen-1) * 8)
P = montgomeryLadder(¶ms.InitCurve, &P, secret, uint(random_index_p))
Q = montgomeryLadder(¶ms.InitCurve, &Q, secret, uint(random_index_q))
var invQz, invPz Fp2
invQz = Q.Z
invPz = P.Z
inv(&invQz, &invQz)
inv(&invPz, &invPz)
mul(&P.X, &P.X, &invPz)
mul(&Q.X, &Q.X, &invQz)
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: P.X, Z: params.OneFp2}
xQ = ProjectivePoint{X: Q.X, Z: params.OneFp2}
xQmP = ProjectivePoint{X: params.OneFp2, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify == nil {
t.Errorf("\nExpect ciphertext in torsion E[2^e2] to fail, index_p: %v index_q: %v scalar: %v ", random_index_p, random_index_q, secret)
}
}
// Construct Invalid public key tuple (P,Q) such that P and Q are in E[3^e3] but not of full order 3^e3
// Simulate section 3.1.1 of paper https://eprint.iacr.org/2022/054.pdf
// We only construct point P and Q because in the attacks the third point is P-Q by construction
// and the countermeasure does not test it
// Without loss of generality, we assume the curve is the starting curve
func testInvalidPKFullOrder(t *testing.T) {
var P, Q ProjectivePoint
P = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
Q = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2}
var e3 uint32
e3_float := float64(int(params.B.SecretBitLen)+1) / math.Log2(3)
e3 = uint32(e3_float)
rand.Seed(time.Now().UnixNano())
random_index_p := rand.Intn(int(e3))
random_index_q := rand.Intn(int(e3))
cparam_q := CalcCurveParamsEquiv3(¶ms.InitCurve)
Pow3k(&P, &cparam_q, uint32(random_index_p))
Pow3k(&Q, &cparam_q, uint32(random_index_q))
var invQz, invPz Fp2
invQz = Q.Z
invPz = P.Z
inv(&invQz, &invQz)
inv(&invPz, &invPz)
mul(&P.X, &P.X, &invPz)
mul(&Q.X, &Q.X, &invQz)
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: P.X, Z: params.OneFp2}
xQ = ProjectivePoint{X: Q.X, Z: params.OneFp2}
xQmP = ProjectivePoint{X: params.OneFp2, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify == nil {
t.Errorf("\nExpect ciphertext not of full order to fail, index_p: %v index_q: %v ", random_index_p, random_index_q)
}
}
// A trivial test case not covered by paper https://eprint.iacr.org/2022/054.pdf and HB
// Countermeasure in https://eprint.iacr.org/2022/054.pdf only cares about P and Q
// But if PmQ is point T or O, that can also lead to recovery of the first bit
func testInvalidPmQ(t *testing.T) {
var zero Fp2
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2}
xQ = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2}
xQmP = ProjectivePoint{X: zero, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify == nil {
t.Errorf("\nExpect PmQ as T to fail\n")
}
}
// Test valid ciphertext
// Where P, Q are linearly independent points of correct order 3^e3 in E[3^e3]
func testValidPQ(t *testing.T) {
var xP, xQ, xQmP ProjectivePoint
xP = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
xQ = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2}
xQmP = ProjectivePoint{X: params.OneFp2, Z: params.OneFp2}
error_verify := PublicKeyValidation(¶ms.InitCurve, &xP, &xQ, &xQmP, params.B.SecretBitLen)
if error_verify != nil {
t.Errorf("\nExpect correct ciphertext to not fail\n")
}
}
/* -------------------------------------------------------------------------
Public key / Ciphertext validation against attacks proposed in paper https://eprint.iacr.org/2022/054.pdf and HB
-------------------------------------------------------------------------*/
func TestInvalidPK(t *testing.T) {
t.Run("InvalidPmQ", testInvalidPmQ)
t.Run("InvalidPKNoneLinear", testInvalidPKNoneLinear)
t.Run("InvalidPKT", testInvalidPKT)
t.Run("InvalidPKOrder2", testInvalidPKOrder2)
t.Run("InvalidPKFullOrder", testInvalidPKFullOrder)
t.Run("ValidPQ", testValidPQ)
}
|