1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package {{.PACKAGE}}
import (
"math"
"errors"
. "github.com/cloudflare/circl/dh/sidh/internal/common"
)
// Stores isogeny 3 curve constants
type isogeny3 struct {
K1 Fp2
K2 Fp2
}
// Stores isogeny 4 curve constants
type isogeny4 struct {
isogeny3
K3 Fp2
}
// Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result
// is returned in jBytes buffer, encoded in little-endian format. Caller
// provided jBytes buffer has to be big enough to j-invariant value. In case
// of SIDH, buffer size must be at least size of shared secret.
// Implementation corresponds to Algorithm 9 from SIKE.
func Jinvariant(cparams *ProjectiveCurveParameters, j *Fp2) {
var t0, t1 Fp2
sqr(j, &cparams.A) // j = A^2
sqr(&t1, &cparams.C) // t1 = C^2
add(&t0, &t1, &t1) // t0 = t1 + t1
sub(&t0, j, &t0) // t0 = j - t0
sub(&t0, &t0, &t1) // t0 = t0 - t1
sub(j, &t0, &t1) // t0 = t0 - t1
sqr(&t1, &t1) // t1 = t1^2
mul(j, j, &t1) // j = j * t1
add(&t0, &t0, &t0) // t0 = t0 + t0
add(&t0, &t0, &t0) // t0 = t0 + t0
sqr(&t1, &t0) // t1 = t0^2
mul(&t0, &t0, &t1) // t0 = t0 * t1
add(&t0, &t0, &t0) // t0 = t0 + t0
add(&t0, &t0, &t0) // t0 = t0 + t0
inv(j, j) // j = 1/j
mul(j, &t0, j) // j = t0 * j
}
// Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function
// recovers projective coordinate A of a curve. This is Algorithm 10 from SIKE.
func RecoverCoordinateA(curve *ProjectiveCurveParameters, xp, xq, xr *Fp2) {
var t0, t1 Fp2
add(&t1, xp, xq) // t1 = Xp + Xq
mul(&t0, xp, xq) // t0 = Xp * Xq
mul(&curve.A, xr, &t1) // A = X(q-p) * t1
add(&curve.A, &curve.A, &t0) // A = A + t0
mul(&t0, &t0, xr) // t0 = t0 * X(q-p)
sub(&curve.A, &curve.A, ¶ms.OneFp2) // A = A - 1
add(&t0, &t0, &t0) // t0 = t0 + t0
add(&t1, &t1, xr) // t1 = t1 + X(q-p)
add(&t0, &t0, &t0) // t0 = t0 + t0
sqr(&curve.A, &curve.A) // A = A^2
inv(&t0, &t0) // t0 = 1/t0
mul(&curve.A, &curve.A, &t0) // A = A * t0
sub(&curve.A, &curve.A, &t1) // A = A - t1
}
// Computes equivalence (A:C) ~ (A+2C : A-2C)
func CalcCurveParamsEquiv3(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
var coef CurveCoefficientsEquiv
var c2 Fp2
add(&c2, &cparams.C, &cparams.C)
// A24p = A+2*C
add(&coef.A, &cparams.A, &c2)
// A24m = A-2*C
sub(&coef.C, &cparams.A, &c2)
return coef
}
// Computes equivalence (A:C) ~ (A+2C : 4C)
func CalcCurveParamsEquiv4(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
var coefEq CurveCoefficientsEquiv
add(&coefEq.C, &cparams.C, &cparams.C)
// A24p = A+2C
add(&coefEq.A, &cparams.A, &coefEq.C)
// C24 = 4*C
add(&coefEq.C, &coefEq.C, &coefEq.C)
return coefEq
}
// Helper function for RightToLeftLadder(). Returns A+2C / 4.
func CalcAplus2Over4(cparams *ProjectiveCurveParameters) (ret Fp2) {
var tmp Fp2
// 2C
add(&tmp, &cparams.C, &cparams.C)
// A+2C
add(&ret, &cparams.A, &tmp)
// 1/4C
add(&tmp, &tmp, &tmp)
inv(&tmp, &tmp)
// A+2C/4C
mul(&ret, &ret, &tmp)
return
}
// Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C).
func RecoverCurveCoefficients3(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
add(&cparams.A, &coefEq.A, &coefEq.C)
// cparams.A = 2*(A+2C+A-2C) = 4A
add(&cparams.A, &cparams.A, &cparams.A)
// cparams.C = (A+2C-A+2C) = 4C
sub(&cparams.C, &coefEq.A, &coefEq.C)
return
}
// Recovers (A:C) curve parameters from projectively equivalent (A+2C:4C).
func RecoverCurveCoefficients4(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
// cparams.C = (4C)*1/2=2C
mul(&cparams.C, &coefEq.C, ¶ms.HalfFp2)
// cparams.A = A+2C - 2C = A
sub(&cparams.A, &coefEq.A, &cparams.C)
// cparams.C = 2C * 1/2 = C
mul(&cparams.C, &cparams.C, ¶ms.HalfFp2)
}
// Combined coordinate doubling and differential addition. Takes projective points
// P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E.
// Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE
func xDbladd(P, Q, QmP *ProjectivePoint, a24 *Fp2) (dblP, PaQ ProjectivePoint) {
var t0, t1, t2 Fp2
xQmP, zQmP := &QmP.X, &QmP.Z
xPaQ, zPaQ := &PaQ.X, &PaQ.Z
x2P, z2P := &dblP.X, &dblP.Z
xP, zP := &P.X, &P.Z
xQ, zQ := &Q.X, &Q.Z
add(&t0, xP, zP) // t0 = Xp+Zp
sub(&t1, xP, zP) // t1 = Xp-Zp
sqr(x2P, &t0) // 2P.X = t0^2
sub(&t2, xQ, zQ) // t2 = Xq-Zq
add(xPaQ, xQ, zQ) // Xp+q = Xq+Zq
mul(&t0, &t0, &t2) // t0 = t0 * t2
mul(z2P, &t1, &t1) // 2P.Z = t1 * t1
mul(&t1, &t1, xPaQ) // t1 = t1 * Xp+q
sub(&t2, x2P, z2P) // t2 = 2P.X - 2P.Z
mul(x2P, x2P, z2P) // 2P.X = 2P.X * 2P.Z
mul(xPaQ, a24, &t2) // Xp+q = A24 * t2
sub(zPaQ, &t0, &t1) // Zp+q = t0 - t1
add(z2P, xPaQ, z2P) // 2P.Z = Xp+q + 2P.Z
add(xPaQ, &t0, &t1) // Xp+q = t0 + t1
mul(z2P, z2P, &t2) // 2P.Z = 2P.Z * t2
sqr(zPaQ, zPaQ) // Zp+q = Zp+q ^ 2
sqr(xPaQ, xPaQ) // Xp+q = Xp+q ^ 2
mul(zPaQ, xQmP, zPaQ) // Zp+q = Xq-p * Zp+q
mul(xPaQ, zQmP, xPaQ) // Xp+q = Zq-p * Xp+q
return
}
// Given the curve parameters, xP = x(P), computes xP = x([2^k]P)
// Safe to overlap xP, x2P.
func Pow2k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
var t0, t1 Fp2
x, z := &xP.X, &xP.Z
for i := uint32(0); i < k; i++ {
sub(&t0, x, z) // t0 = Xp - Zp
add(&t1, x, z) // t1 = Xp + Zp
sqr(&t0, &t0) // t0 = t0 ^ 2
sqr(&t1, &t1) // t1 = t1 ^ 2
mul(z, ¶ms.C, &t0) // Z2p = C24 * t0
mul(x, z, &t1) // X2p = Z2p * t1
sub(&t1, &t1, &t0) // t1 = t1 - t0
mul(&t0, ¶ms.A, &t1) // t0 = A24+ * t1
add(z, z, &t0) // Z2p = Z2p + t0
mul(z, z, &t1) // Zp = Z2p * t1
}
}
// Given the curve parameters, xP = x(P), and k >= 0, compute xP = x([3^k]P).
//
// Safe to overlap xP, xR.
func Pow3k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
var t0, t1, t2, t3, t4, t5, t6 Fp2
x, z := &xP.X, &xP.Z
for i := uint32(0); i < k; i++ {
sub(&t0, x, z) // t0 = Xp - Zp
sqr(&t2, &t0) // t2 = t0^2
add(&t1, x, z) // t1 = Xp + Zp
sqr(&t3, &t1) // t3 = t1^2
add(&t4, &t1, &t0) // t4 = t1 + t0
sub(&t0, &t1, &t0) // t0 = t1 - t0
sqr(&t1, &t4) // t1 = t4^2
sub(&t1, &t1, &t3) // t1 = t1 - t3
sub(&t1, &t1, &t2) // t1 = t1 - t2
mul(&t5, &t3, ¶ms.A) // t5 = t3 * A24+
mul(&t3, &t3, &t5) // t3 = t5 * t3
mul(&t6, &t2, ¶ms.C) // t6 = t2 * A24-
mul(&t2, &t2, &t6) // t2 = t2 * t6
sub(&t3, &t2, &t3) // t3 = t2 - t3
sub(&t2, &t5, &t6) // t2 = t5 - t6
mul(&t1, &t2, &t1) // t1 = t2 * t1
add(&t2, &t3, &t1) // t2 = t3 + t1
sqr(&t2, &t2) // t2 = t2^2
mul(x, &t2, &t4) // X3p = t2 * t4
sub(&t1, &t3, &t1) // t1 = t3 - t1
sqr(&t1, &t1) // t1 = t1^2
mul(z, &t1, &t0) // Z3p = t1 * t0
}
}
// Set (y1, y2, y3) = (1/x1, 1/x2, 1/x3).
//
// All xi, yi must be distinct.
func Fp2Batch3Inv(x1, x2, x3, y1, y2, y3 *Fp2) {
var x1x2, t Fp2
mul(&x1x2, x1, x2) // x1*x2
mul(&t, &x1x2, x3) // 1/(x1*x2*x3)
inv(&t, &t)
mul(y1, &t, x2) // 1/x1
mul(y1, y1, x3)
mul(y2, &t, x1) // 1/x2
mul(y2, y2, x3)
mul(y3, &t, &x1x2) // 1/x3
}
// Scalarmul3Pt is a right-to-left point multiplication that given the
// x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P.
// nbits must be smaller or equal to len(scalar).
func ScalarMul3Pt(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint, scalar []uint8) ProjectivePoint {
var R0, R2, R1 ProjectivePoint
aPlus2Over4 := CalcAplus2Over4(cparams)
R1 = *P
R2 = *PmQ
R0 = *Q
// Iterate over the bits of the scalar, bottom to top
prevBit := uint8(0)
for i := uint(0); i < nbits; i++ {
bit := (scalar[i>>3] >> (i & 7) & 1)
swap := prevBit ^ bit
prevBit = bit
cswap(&R1.X, &R1.Z, &R2.X, &R2.Z, swap)
R0, R2 = xDbladd(&R0, &R2, &R1, &aPlus2Over4)
}
cswap(&R1.X, &R1.Z, &R2.X, &R2.Z, prevBit)
return R1
}
// Given a three-torsion point p = x(PB) on the curve E_(A:C), construct the
// three-isogeny phi : E_(A:C) -> E_(A:C)/<P_3> = E_(A':C').
//
// Input: (XP_3: ZP_3), where P_3 has exact order 3 on E_A/C
// Output:
// - Curve coordinates (A' + 2C', A' - 2C') corresponding to E_A'/C' = A_E/C/<P3>
// - Isogeny phi with constants in F_p^2
func (phi *isogeny3) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
var t0, t1, t2, t3, t4 Fp2
var coefEq CurveCoefficientsEquiv
K1, K2 := &phi.K1, &phi.K2
sub(K1, &p.X, &p.Z) // K1 = XP3 - ZP3
sqr(&t0, K1) // t0 = K1^2
add(K2, &p.X, &p.Z) // K2 = XP3 + ZP3
sqr(&t1, K2) // t1 = K2^2
add(&t2, &t0, &t1) // t2 = t0 + t1
add(&t3, K1, K2) // t3 = K1 + K2
sqr(&t3, &t3) // t3 = t3^2
sub(&t3, &t3, &t2) // t3 = t3 - t2
add(&t2, &t1, &t3) // t2 = t1 + t3
add(&t3, &t3, &t0) // t3 = t3 + t0
add(&t4, &t3, &t0) // t4 = t3 + t0
add(&t4, &t4, &t4) // t4 = t4 + t4
add(&t4, &t1, &t4) // t4 = t1 + t4
mul(&coefEq.C, &t2, &t4) // A24m = t2 * t4
add(&t4, &t1, &t2) // t4 = t1 + t2
add(&t4, &t4, &t4) // t4 = t4 + t4
add(&t4, &t0, &t4) // t4 = t0 + t4
mul(&t4, &t3, &t4) // t4 = t3 * t4
sub(&t0, &t4, &coefEq.C) // t0 = t4 - A24m
add(&coefEq.A, &coefEq.C, &t0) // A24p = A24m + t0
return coefEq
}
// Given a 3-isogeny phi and a point pB = x(PB), compute x(QB), the x-coordinate
// of the image QB = phi(PB) of PB under phi : E_(A:C) -> E_(A':C').
//
// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
// parameters are returned by the GenerateCurve function used to construct phi.
func (phi *isogeny3) EvaluatePoint(p *ProjectivePoint) {
var t0, t1, t2 Fp2
K1, K2 := &phi.K1, &phi.K2
px, pz := &p.X, &p.Z
add(&t0, px, pz) // t0 = XQ + ZQ
sub(&t1, px, pz) // t1 = XQ - ZQ
mul(&t0, K1, &t0) // t2 = K1 * t0
mul(&t1, K2, &t1) // t1 = K2 * t1
add(&t2, &t0, &t1) // t2 = t0 + t1
sub(&t0, &t1, &t0) // t0 = t1 - t0
sqr(&t2, &t2) // t2 = t2 ^ 2
sqr(&t0, &t0) // t0 = t0 ^ 2
mul(px, px, &t2) // XQ'= XQ * t2
mul(pz, pz, &t0) // ZQ'= ZQ * t0
}
// Given a four-torsion point p = x(PB) on the curve E_(A:C), construct the
// four-isogeny phi : E_(A:C) -> E_(A:C)/<P_4> = E_(A':C').
//
// Input: (XP_4: ZP_4), where P_4 has exact order 4 on E_A/C
// Output:
// - Curve coordinates (A' + 2C', 4C') corresponding to E_A'/C' = A_E/C/<P4>
// - Isogeny phi with constants in F_p^2
func (phi *isogeny4) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
var coefEq CurveCoefficientsEquiv
xp4, zp4 := &p.X, &p.Z
K1, K2, K3 := &phi.K1, &phi.K2, &phi.K3
sub(K2, xp4, zp4)
add(K3, xp4, zp4)
sqr(K1, zp4)
add(K1, K1, K1)
sqr(&coefEq.C, K1)
add(K1, K1, K1)
sqr(&coefEq.A, xp4)
add(&coefEq.A, &coefEq.A, &coefEq.A)
sqr(&coefEq.A, &coefEq.A)
return coefEq
}
// Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
//
// Input: Isogeny returned by GenerateCurve and point q=(Qx,Qz) from E0_A/C
// Output: Corresponding point q from E1_A'/C', where E1 is 4-isogenous to E0
func (phi *isogeny4) EvaluatePoint(p *ProjectivePoint) {
var t0, t1 Fp2
xq, zq := &p.X, &p.Z
K1, K2, K3 := &phi.K1, &phi.K2, &phi.K3
add(&t0, xq, zq)
sub(&t1, xq, zq)
mul(xq, &t0, K2)
mul(zq, &t1, K3)
mul(&t0, &t0, &t1)
mul(&t0, &t0, K1)
add(&t1, xq, zq)
sub(zq, xq, zq)
sqr(&t1, &t1)
sqr(zq, zq)
add(xq, &t0, &t1)
sub(&t0, zq, &t0)
mul(xq, xq, &t1)
mul(zq, zq, &t0)
}
// PublicKeyValidation preforms public key/ciphertext validation using the CLN test.
// CLN test: Check that P and Q are both of order 3^e3 and they generate the torsion E_A[3^e3]
// A countermeasure for remote timing attacks on SIKE; suggested by https://eprint.iacr.org/2022/054.pdf
// Any curve E_A (SIKE 434, 503, 751) that passes CLN test is supersingular.
// Input: The public key / ciphertext P, Q, PmQ. The projective coordinate A of the curve defined by (P, Q, PmQ)
// Outputs: Whether (P,Q,PmQ) follows the CLN test
func PublicKeyValidation(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint) error {
var PmQX, PmQZ Fp2
FromMontgomery(&PmQX, &PmQ.X)
FromMontgomery(&PmQZ, &PmQ.Z)
// PmQ is not point T or O
if((isZero(&PmQX)==1)||(isZero(&PmQZ)==1)){
return errors.New("curve: PmQ is invalid")
}
cparam := CalcCurveParamsEquiv3(cparams)
// Compute e_3 = log3(2^(nbits+1))
var e3 uint32
e3_float := float64(int(nbits)+1)/math.Log2(3)
e3 = uint32(e3_float)
// Verify that P and Q generate E_A[3^e_3] by checking: [3^(e_3-1)]P != [+-3^(e_3-1)]Q
var test_P, test_Q ProjectivePoint
test_P = *P
test_Q = *Q
Pow3k(&test_P, &cparam, e3-1)
Pow3k(&test_Q, &cparam, e3-1)
var PZ, QZ Fp2
FromMontgomery(&PZ, &test_P.Z)
FromMontgomery(&QZ, &test_Q.Z)
// P, Q are not of full order 3^e_3
if((isZero(&PZ)==1)||(isZero(&QZ)==1)){
return errors.New("curve: ciphertext/public key are not of full order 3^e3")
}
// PX/PZ = affine(PX)
// QX/QZ = affine(QX)
// If PX/PZ = QX/QZ, we have P=+-Q
var PXQZ_PZQX_fromMont, PXQZ_PZQX, PXQZ, PZQX Fp2
mul(&PXQZ, &test_P.X, &test_Q.Z)
mul(&PZQX, &test_P.Z, &test_Q.X)
sub(&PXQZ_PZQX, &PXQZ, &PZQX)
FromMontgomery(&PXQZ_PZQX_fromMont, &PXQZ_PZQX)
// [3^(e_3-1)]P == [+-3^(e_3-1)]Q
if(isZero(&PXQZ_PZQX_fromMont)==1){
return errors.New("curve: ciphertext/public key are not linearly independent")
}
// Check that Ord(P) = Ord(Q) = 3^(e_3)
Pow3k(&test_P, &cparam, 1)
Pow3k(&test_Q, &cparam, 1)
FromMontgomery(&PZ, &test_P.Z)
FromMontgomery(&QZ, &test_Q.Z)
// P, Q are not of correct order 3^e_3
if((isZero(&PZ)==0)||(isZero(&QZ)==0)){
return errors.New("curve: ciphertext/public key are not of correct order 3^e3")
}
return nil
}
|