1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package {{.PACKAGE}}
import (
"math/rand"
"reflect"
"testing"
"testing/quick"
"github.com/cloudflare/circl/dh/sidh/internal/common"
)
type testParams struct {
Point common.ProjectivePoint
Cparam common.ProjectiveCurveParameters
ExtElem common.Fp2
}
// Returns true if lhs = rhs. Takes variable time.
func vartimeEqFp2(lhs, rhs *common.Fp2) bool {
a := *lhs
b := *rhs
mod{{.FIELD}}(&a.A)
mod{{.FIELD}}(&a.B)
mod{{.FIELD}}(&b.A)
mod{{.FIELD}}(&b.B)
eq := true
for i := 0; i < FpWords && eq; i++ {
eq = eq && (a.A[i] == b.A[i])
eq = eq && (a.B[i] == b.B[i])
}
return eq
}
func (testParams) generateFp2(rand *rand.Rand) common.Fp2 {
// Generation strategy: low limbs taken from [0,2^64); high limb
// taken from smaller range
//
// Size hint is ignored since all elements are fixed size.
//
// Field elements taken in range [0,2p). Emulate this by capping
// the high limb by the top digit of 2*p-1:
//
// sage: (2*p-1).digits(2^64)[-1]
//
// This still allows generating values >= 2p, but hopefully that
// excess is OK (and if it's not, we'll find out, because it's for
// testing...)
highLimb := rand.Uint64() % {{.FIELD}}x2[FpWords-1]
fpElementGen := func() (fp common.Fp) {
for i := 0; i < (FpWords - 1); i++ {
fp[i] = rand.Uint64()
}
fp[FpWords-1] = highLimb
return fp
}
return common.Fp2{A: fpElementGen(), B: fpElementGen()}
}
func (c testParams) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(
testParams{
common.ProjectivePoint{
X: c.generateFp2(rand),
Z: c.generateFp2(rand),
},
common.ProjectiveCurveParameters{
A: c.generateFp2(rand),
C: c.generateFp2(rand),
},
c.generateFp2(rand),
})
}
func TestOne(t *testing.T) {
var tmp common.Fp2
mul(&tmp, ¶ms.OneFp2, ¶ms.A.AffineP)
if !vartimeEqFp2(&tmp, ¶ms.A.AffineP) {
t.Error("Not equal 1")
}
}
func TestFp2ToBytesRoundTrip(t *testing.T) {
roundTrips := func(x testParams) bool {
xBytes := make([]byte, 2*params.Bytelen)
var xPrime common.Fp2
common.Fp2ToBytes(xBytes[:], &x.ExtElem, params.Bytelen)
common.BytesToFp2(&xPrime, xBytes[:], params.Bytelen)
return vartimeEqFp2(&xPrime, &x.ExtElem)
}
if err := quick.Check(roundTrips, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2MulDistributesOverAdd(t *testing.T) {
mulDistributesOverAdd := func(x, y, z testParams) bool {
// Compute t1 = (x+y)*z
t1 := new(common.Fp2)
add(t1, &x.ExtElem, &y.ExtElem)
mul(t1, t1, &z.ExtElem)
// Compute t2 = x*z + y*z
t2 := new(common.Fp2)
t3 := new(common.Fp2)
mul(t2, &x.ExtElem, &z.ExtElem)
mul(t3, &y.ExtElem, &z.ExtElem)
add(t2, t2, t3)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(mulDistributesOverAdd, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2MulIsAssociative(t *testing.T) {
isAssociative := func(x, y, z testParams) bool {
// Compute t1 = (x*y)*z
t1 := new(common.Fp2)
mul(t1, &x.ExtElem, &y.ExtElem)
mul(t1, t1, &z.ExtElem)
// Compute t2 = (y*z)*x
t2 := new(common.Fp2)
mul(t2, &y.ExtElem, &z.ExtElem)
mul(t2, t2, &x.ExtElem)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(isAssociative, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2SquareMatchesMul(t *testing.T) {
sqrMatchesMul := func(x testParams) bool {
// Compute t1 = (x*x)
t1 := new(common.Fp2)
mul(t1, &x.ExtElem, &x.ExtElem)
// Compute t2 = x^2
t2 := new(common.Fp2)
sqr(t2, &x.ExtElem)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(sqrMatchesMul, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2Inv(t *testing.T) {
inverseIsCorrect := func(x testParams) bool {
z := new(common.Fp2)
inv(z, &x.ExtElem)
// Now z = (1/x), so (z * x) * x == x
mul(z, z, &x.ExtElem)
mul(z, z, &x.ExtElem)
return vartimeEqFp2(z, &x.ExtElem)
}
// This is more expensive; run fewer tests
fasterCheckConfig := &quick.Config{MaxCount: (1 << 11)}
if err := quick.Check(inverseIsCorrect, fasterCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2Batch3Inv(t *testing.T) {
batchInverseIsCorrect := func(x1, x2, x3 testParams) bool {
var x1Inv, x2Inv, x3Inv common.Fp2
inv(&x1Inv, &x1.ExtElem)
inv(&x2Inv, &x2.ExtElem)
inv(&x3Inv, &x3.ExtElem)
var y1, y2, y3 common.Fp2
Fp2Batch3Inv(&x1.ExtElem, &x2.ExtElem, &x3.ExtElem, &y1, &y2, &y3)
return (vartimeEqFp2(&x1Inv, &y1) && vartimeEqFp2(&x2Inv, &y2) && vartimeEqFp2(&x3Inv, &y3))
}
// This is more expensive; run fewer tests
fasterCheckConfig := &quick.Config{MaxCount: (1 << 8)}
if err := quick.Check(batchInverseIsCorrect, fasterCheckConfig); err != nil {
t.Error(err)
}
}
func BenchmarkFp2Mul(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
mul(w, z, z)
}
}
func BenchmarkFp2Inv(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
inv(w, z)
}
}
func BenchmarkFp2Square(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
sqr(w, z)
}
}
func BenchmarkFp2Add(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
add(w, z, z)
}
}
func BenchmarkFp2Sub(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
sub(w, z, z)
}
}
|