File: sike.go

package info (click to toggle)
golang-github-cloudflare-circl 1.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,064 kB
  • sloc: asm: 20,492; ansic: 1,292; makefile: 68
file content (284 lines) | stat: -rw-r--r-- 7,929 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package sidh

import (
	"crypto/subtle"
	"errors"
	"io"

	"github.com/cloudflare/circl/dh/sidh/internal/common"
	"github.com/cloudflare/circl/internal/sha3"
)

// SIKE KEM interface.
//
// Deprecated: not cryptographically secure.
type KEM struct {
	allocated   bool
	rng         io.Reader
	msg         []byte
	secretBytes []byte
	params      *common.SidhParams
	shake       sha3.State
}

// NewSike434 instantiates SIKE/p434 KEM.
//
// Deprecated: not cryptographically secure.
func NewSike434(rng io.Reader) *KEM {
	var c KEM
	c.Allocate(Fp434, rng)
	return &c
}

// NewSike503 instantiates SIKE/p503 KEM.
//
// Deprecated: not cryptographically secure.
func NewSike503(rng io.Reader) *KEM {
	var c KEM
	c.Allocate(Fp503, rng)
	return &c
}

// NewSike751 instantiates SIKE/p751 KEM.
//
// Deprecated: not cryptographically secure.
func NewSike751(rng io.Reader) *KEM {
	var c KEM
	c.Allocate(Fp751, rng)
	return &c
}

// Allocate allocates KEM object for multiple SIKE operations. The rng
// must be cryptographically secure PRNG.
func (c *KEM) Allocate(id uint8, rng io.Reader) {
	c.rng = rng
	c.params = common.Params(id)
	c.msg = make([]byte, c.params.MsgLen)
	c.secretBytes = make([]byte, c.params.A.SecretByteLen)
	c.shake = sha3.NewShake256()
	c.allocated = true
}

// Encapsulate receives the public key and generates SIKE ciphertext and shared secret.
// The generated ciphertext is used for authentication.
// Error is returned in case PRNG fails. Function panics in case wrongly formatted
// input was provided.
func (c *KEM) Encapsulate(ciphertext, secret []byte, pub *PublicKey) error {
	if !c.allocated {
		panic("KEM unallocated")
	}

	if KeyVariantSike != pub.keyVariant {
		panic("Wrong type of public key")
	}

	if len(secret) < c.SharedSecretSize() {
		panic("shared secret buffer to small")
	}

	if len(ciphertext) < c.CiphertextSize() {
		panic("ciphertext buffer to small")
	}

	// Generate ephemeral value
	_, err := io.ReadFull(c.rng, c.msg[:])
	if err != nil {
		return err
	}

	var buf [3 * common.MaxSharedSecretBsz]byte
	skA := PrivateKey{
		key: key{
			params:     c.params,
			keyVariant: KeyVariantSidhA,
		},
		Scalar: c.secretBytes,
	}
	pkA := NewPublicKey(c.params.ID, KeyVariantSidhA)

	pub.Export(buf[:])
	c.shake.Reset()
	_, _ = c.shake.Write(c.msg)
	_, _ = c.shake.Write(buf[:3*c.params.SharedSecretSize])
	_, _ = c.shake.Read(skA.Scalar)

	// Ensure bitlength is not bigger then to 2^e2-1
	skA.Scalar[len(skA.Scalar)-1] &= (1 << (c.params.A.SecretBitLen % 8)) - 1
	skA.GeneratePublicKey(pkA)
	c.generateCiphertext(ciphertext, &skA, pkA, pub, c.msg[:])

	// K = H(msg||(c0||c1))
	c.shake.Reset()
	_, _ = c.shake.Write(c.msg)
	_, _ = c.shake.Write(ciphertext)
	_, _ = c.shake.Read(secret[:c.SharedSecretSize()])
	return nil
}

// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
// secret if plaintext verifies correctly, otherwise function outputs random value.
// Decapsulation may panic in case input is wrongly formatted, in particular, size of
// the 'ciphertext' must be exactly equal to c.CiphertextSize().
func (c *KEM) Decapsulate(secret []byte, prv *PrivateKey, pub *PublicKey, ciphertext []byte) error {
	if !c.allocated {
		panic("KEM unallocated")
	}

	if KeyVariantSike != pub.keyVariant {
		panic("Wrong type of public key")
	}

	if pub.keyVariant != prv.keyVariant {
		panic("Public and private key are of different type")
	}

	if len(secret) < c.SharedSecretSize() {
		panic("shared secret buffer to small")
	}

	if len(ciphertext) != c.CiphertextSize() {
		panic("ciphertext buffer to small")
	}

	var m [common.MaxMsgBsz]byte
	var r [common.MaxSidhPrivateKeyBsz]byte
	var pkBytes [3 * common.MaxSharedSecretBsz]byte
	skA := PrivateKey{
		key: key{
			params:     c.params,
			keyVariant: KeyVariantSidhA,
		},
		Scalar: c.secretBytes,
	}
	pkA := NewPublicKey(c.params.ID, KeyVariantSidhA)
	c1Len, err := c.decrypt(m[:], prv, ciphertext)
	if err != nil {
		return err
	}

	// r' = G(m'||pub)
	pub.Export(pkBytes[:])
	c.shake.Reset()
	_, _ = c.shake.Write(m[:c1Len])
	_, _ = c.shake.Write(pkBytes[:3*c.params.SharedSecretSize])
	_, _ = c.shake.Read(r[:c.params.A.SecretByteLen])
	// Ensure bitlength is not bigger than 2^e2-1
	r[c.params.A.SecretByteLen-1] &= (1 << (c.params.A.SecretBitLen % 8)) - 1

	err = skA.Import(r[:c.params.A.SecretByteLen])
	if err != nil {
		return err
	}
	skA.GeneratePublicKey(pkA)
	pkA.Export(pkBytes[:])

	// S is chosen at random when generating a key and unknown to other party. It is
	// important that S is unpredictable to the other party.  Without this check, would
	// be possible to recover a secret, by providing series of invalid ciphertexts.
	//
	// See more details in "On the security of supersingular isogeny cryptosystems"
	// (S. Galbraith, et al., 2016, ePrint #859).
	mask := subtle.ConstantTimeCompare(pkBytes[:c.params.PublicKeySize], ciphertext[:pub.params.PublicKeySize])
	common.Cpick(mask, m[:c1Len], m[:c1Len], prv.S)
	c.shake.Reset()
	_, _ = c.shake.Write(m[:c1Len])
	_, _ = c.shake.Write(ciphertext)
	_, _ = c.shake.Read(secret[:c.SharedSecretSize()])
	return nil
}

// Resets internal state of KEM. Function should be used
// after Allocate and between subsequent calls to Encapsulate
// and/or Decapsulate.
func (c *KEM) Reset() {
	for i := range c.msg {
		c.msg[i] = 0
	}

	for i := range c.secretBytes {
		c.secretBytes[i] = 0
	}
}

// Returns size of resulting ciphertext.
func (c *KEM) CiphertextSize() int {
	return c.params.CiphertextSize
}

// Returns size of resulting shared secret.
func (c *KEM) SharedSecretSize() int {
	return c.params.KemSize
}

// PublicKeySize returns size of the public key in bytes.
func (c *KEM) PublicKeySize() int {
	return c.params.PublicKeySize
}

// Size returns size of the private key in bytes.
func (c *KEM) PrivateKeySize() int {
	return int(c.params.B.SecretByteLen) + c.params.MsgLen
}

func (c *KEM) generateCiphertext(ctext []byte, skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) {
	var n [common.MaxMsgBsz]byte
	var j [common.MaxSharedSecretBsz]byte
	ptextLen := skA.params.MsgLen

	skA.DeriveSecret(j[:], pkB)
	c.shake.Reset()
	_, _ = c.shake.Write(j[:skA.params.SharedSecretSize])
	_, _ = c.shake.Read(n[:ptextLen])
	for i := range ptext {
		n[i] ^= ptext[i]
	}

	pkA.Export(ctext)
	copy(ctext[pkA.Size():], n[:ptextLen])
}

// encrypt uses SIKE public key to encrypt plaintext. Requires cryptographically secure
// PRNG. Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
// or wrongly formated input was provided.
func (c *KEM) encrypt(ctext []byte, rng io.Reader, pub *PublicKey, ptext []byte) error {
	ptextLen := len(ptext)
	// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
	if ptextLen != pub.params.KemSize {
		return errors.New("unsupported message length")
	}

	skA := NewPrivateKey(pub.params.ID, KeyVariantSidhA)
	pkA := NewPublicKey(pub.params.ID, KeyVariantSidhA)
	err := skA.Generate(rng)
	if err != nil {
		return err
	}

	skA.GeneratePublicKey(pkA)
	c.generateCiphertext(ctext, skA, pkA, pub, ptext)
	return nil
}

// decrypt uses SIKE private key to decrypt ciphertext. Returns plaintext in case
// decryption succeeds or error in case unexpected input was provided.
// Constant time.
func (c *KEM) decrypt(n []byte, prv *PrivateKey, ctext []byte) (int, error) {
	var c1Len int
	var j [common.MaxSharedSecretBsz]byte
	pkLen := prv.params.PublicKeySize

	// ctext is a concatenation of (ciphertext = pubkey_A || c1)
	// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
	// Lengths has been already checked by Decapsulate()
	c1Len = len(ctext) - pkLen
	c0 := NewPublicKey(prv.params.ID, KeyVariantSidhA)
	err := c0.Import(ctext[:pkLen])
	prv.DeriveSecret(j[:], c0)
	c.shake.Reset()
	_, _ = c.shake.Write(j[:prv.params.SharedSecretSize])
	_, _ = c.shake.Read(n[:c1Len])
	for i := range n[:c1Len] {
		n[i] ^= ctext[pkLen+i]
	}
	return c1Len, err
}