1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
//go:build (!purego && arm64) || (!purego && amd64)
// +build !purego,arm64 !purego,amd64
package p384
import (
"crypto/subtle"
"math/big"
"github.com/cloudflare/circl/math"
)
type curve struct{}
// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4).
func P384() Curve { return curve{} }
// IsOnCurve reports whether the given (x,y) lies on the curve.
func (c curve) IsOnCurve(x, y *big.Int) bool {
x1, y1 := &fp384{}, &fp384{}
x1.SetBigInt(x)
y1.SetBigInt(y)
montEncode(x1, x1)
montEncode(y1, y1)
y2, x3 := &fp384{}, &fp384{}
fp384Sqr(y2, y1)
fp384Sqr(x3, x1)
fp384Mul(x3, x3, x1)
threeX := &fp384{}
fp384Add(threeX, x1, x1)
fp384Add(threeX, threeX, x1)
fp384Sub(x3, x3, threeX)
fp384Add(x3, x3, &bb)
return *y2 == *x3
}
// Add returns the sum of (x1,y1) and (x2,y2).
func (c curve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
P := newAffinePoint(x1, y1).toJacobian()
P.mixadd(P, newAffinePoint(x2, y2))
return P.toAffine().toInt()
}
// Double returns 2*(x,y).
func (c curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
P := newAffinePoint(x1, y1).toJacobian()
P.double()
return P.toAffine().toInt()
}
// reduceScalar shorten a scalar modulo the order of the curve.
func (c curve) reduceScalar(k []byte) []byte {
bigK := new(big.Int).SetBytes(k)
bigK.Mod(bigK, c.Params().N)
return bigK.FillBytes(make([]byte, sizeFp))
}
// toOdd performs k = (-k mod N) if k is even.
func (c curve) toOdd(k []byte) ([]byte, int) {
var X, Y big.Int
X.SetBytes(k)
Y.Neg(&X).Mod(&Y, c.Params().N)
isEven := 1 - int(X.Bit(0))
x := X.Bytes()
y := Y.Bytes()
if len(x) < len(y) {
x = append(make([]byte, len(y)-len(x)), x...)
} else if len(x) > len(y) {
y = append(make([]byte, len(x)-len(y)), y...)
}
subtle.ConstantTimeCopy(isEven, x, y)
return x, isEven
}
// ScalarMult returns (Qx,Qy)=k*(Px,Py) where k is a number in big-endian form.
func (c curve) ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) {
return c.scalarMultOmega(x1, y1, k, 5)
}
func (c curve) scalarMultOmega(x1, y1 *big.Int, k []byte, omega uint) (x, y *big.Int) {
k = c.reduceScalar(k)
oddK, isEvenK := c.toOdd(k)
var scalar big.Int
scalar.SetBytes(oddK)
if scalar.Sign() == 0 {
return new(big.Int), new(big.Int)
}
const bitsN = uint(384)
L := math.SignedDigit(&scalar, omega, bitsN)
var R jacobianPoint
Q := zeroPoint().toJacobian()
TabP := newAffinePoint(x1, y1).oddMultiples(omega)
for i := len(L) - 1; i > 0; i-- {
for j := uint(0); j < omega-1; j++ {
Q.double()
}
idx := absolute(L[i]) >> 1
for j := range TabP {
R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
}
R.cneg(int(L[i]>>31) & 1)
Q.add(Q, &R)
}
// Calculate the last iteration using complete addition formula.
for j := uint(0); j < omega-1; j++ {
Q.double()
}
idx := absolute(L[0]) >> 1
for j := range TabP {
R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
}
R.cneg(int(L[0]>>31) & 1)
QQ := Q.toProjective()
QQ.completeAdd(QQ, R.toProjective())
QQ.cneg(isEvenK)
return QQ.toAffine().toInt()
}
// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
func (c curve) ScalarBaseMult(k []byte) (x, y *big.Int) {
params := c.Params()
return c.ScalarMult(params.Gx, params.Gy, k)
}
// CombinedMult calculates P=mG+nQ, where G is the generator and Q=(x,y,z).
// The scalars m and n are integers in big-endian form. Non-constant time.
func (c curve) CombinedMult(xQ, yQ *big.Int, m, n []byte) (xP, yP *big.Int) {
const nOmega = uint(5)
var k big.Int
k.SetBytes(m)
nafM := math.OmegaNAF(&k, baseOmega)
k.SetBytes(n)
nafN := math.OmegaNAF(&k, nOmega)
if len(nafM) > len(nafN) {
nafN = append(nafN, make([]int32, len(nafM)-len(nafN))...)
} else if len(nafM) < len(nafN) {
nafM = append(nafM, make([]int32, len(nafN)-len(nafM))...)
}
TabQ := newAffinePoint(xQ, yQ).oddMultiples(nOmega)
var jR jacobianPoint
var aR affinePoint
P := zeroPoint().toJacobian()
for i := len(nafN) - 1; i >= 0; i-- {
P.double()
// Generator point
if nafM[i] != 0 {
idxM := absolute(nafM[i]) >> 1
aR = baseOddMultiples[idxM]
if nafM[i] < 0 {
aR.neg()
}
P.mixadd(P, &aR)
}
// Input point
if nafN[i] != 0 {
idxN := absolute(nafN[i]) >> 1
jR = TabQ[idxN]
if nafN[i] < 0 {
jR.neg()
}
P.add(P, &jR)
}
}
return P.toAffine().toInt()
}
// absolute returns always a positive value.
func absolute(x int32) int32 {
mask := x >> 31
return (x + mask) ^ mask
}
|