File: p384opt.go

package info (click to toggle)
golang-github-cloudflare-circl 1.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,064 kB
  • sloc: asm: 20,492; ansic: 1,292; makefile: 68
file content (181 lines) | stat: -rw-r--r-- 4,517 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//go:build (!purego && arm64) || (!purego && amd64)
// +build !purego,arm64 !purego,amd64

package p384

import (
	"crypto/subtle"
	"math/big"

	"github.com/cloudflare/circl/math"
)

type curve struct{}

// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4).
func P384() Curve { return curve{} }

// IsOnCurve reports whether the given (x,y) lies on the curve.
func (c curve) IsOnCurve(x, y *big.Int) bool {
	x1, y1 := &fp384{}, &fp384{}
	x1.SetBigInt(x)
	y1.SetBigInt(y)
	montEncode(x1, x1)
	montEncode(y1, y1)

	y2, x3 := &fp384{}, &fp384{}
	fp384Sqr(y2, y1)
	fp384Sqr(x3, x1)
	fp384Mul(x3, x3, x1)

	threeX := &fp384{}
	fp384Add(threeX, x1, x1)
	fp384Add(threeX, threeX, x1)

	fp384Sub(x3, x3, threeX)
	fp384Add(x3, x3, &bb)

	return *y2 == *x3
}

// Add returns the sum of (x1,y1) and (x2,y2).
func (c curve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
	P := newAffinePoint(x1, y1).toJacobian()
	P.mixadd(P, newAffinePoint(x2, y2))
	return P.toAffine().toInt()
}

// Double returns 2*(x,y).
func (c curve) Double(x1, y1 *big.Int) (x, y *big.Int) {
	P := newAffinePoint(x1, y1).toJacobian()
	P.double()
	return P.toAffine().toInt()
}

// reduceScalar shorten a scalar modulo the order of the curve.
func (c curve) reduceScalar(k []byte) []byte {
	bigK := new(big.Int).SetBytes(k)
	bigK.Mod(bigK, c.Params().N)
	return bigK.FillBytes(make([]byte, sizeFp))
}

// toOdd performs k = (-k mod N) if k is even.
func (c curve) toOdd(k []byte) ([]byte, int) {
	var X, Y big.Int
	X.SetBytes(k)
	Y.Neg(&X).Mod(&Y, c.Params().N)
	isEven := 1 - int(X.Bit(0))
	x := X.Bytes()
	y := Y.Bytes()

	if len(x) < len(y) {
		x = append(make([]byte, len(y)-len(x)), x...)
	} else if len(x) > len(y) {
		y = append(make([]byte, len(x)-len(y)), y...)
	}
	subtle.ConstantTimeCopy(isEven, x, y)
	return x, isEven
}

// ScalarMult returns (Qx,Qy)=k*(Px,Py) where k is a number in big-endian form.
func (c curve) ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) {
	return c.scalarMultOmega(x1, y1, k, 5)
}

func (c curve) scalarMultOmega(x1, y1 *big.Int, k []byte, omega uint) (x, y *big.Int) {
	k = c.reduceScalar(k)
	oddK, isEvenK := c.toOdd(k)

	var scalar big.Int
	scalar.SetBytes(oddK)
	if scalar.Sign() == 0 {
		return new(big.Int), new(big.Int)
	}
	const bitsN = uint(384)
	L := math.SignedDigit(&scalar, omega, bitsN)

	var R jacobianPoint
	Q := zeroPoint().toJacobian()
	TabP := newAffinePoint(x1, y1).oddMultiples(omega)
	for i := len(L) - 1; i > 0; i-- {
		for j := uint(0); j < omega-1; j++ {
			Q.double()
		}
		idx := absolute(L[i]) >> 1
		for j := range TabP {
			R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
		}
		R.cneg(int(L[i]>>31) & 1)
		Q.add(Q, &R)
	}
	// Calculate the last iteration using complete addition formula.
	for j := uint(0); j < omega-1; j++ {
		Q.double()
	}
	idx := absolute(L[0]) >> 1
	for j := range TabP {
		R.cmov(&TabP[j], subtle.ConstantTimeEq(int32(j), idx))
	}
	R.cneg(int(L[0]>>31) & 1)
	QQ := Q.toProjective()
	QQ.completeAdd(QQ, R.toProjective())
	QQ.cneg(isEvenK)
	return QQ.toAffine().toInt()
}

// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
func (c curve) ScalarBaseMult(k []byte) (x, y *big.Int) {
	params := c.Params()
	return c.ScalarMult(params.Gx, params.Gy, k)
}

// CombinedMult calculates P=mG+nQ, where G is the generator and Q=(x,y,z).
// The scalars m and n are integers in big-endian form. Non-constant time.
func (c curve) CombinedMult(xQ, yQ *big.Int, m, n []byte) (xP, yP *big.Int) {
	const nOmega = uint(5)
	var k big.Int
	k.SetBytes(m)
	nafM := math.OmegaNAF(&k, baseOmega)
	k.SetBytes(n)
	nafN := math.OmegaNAF(&k, nOmega)

	if len(nafM) > len(nafN) {
		nafN = append(nafN, make([]int32, len(nafM)-len(nafN))...)
	} else if len(nafM) < len(nafN) {
		nafM = append(nafM, make([]int32, len(nafN)-len(nafM))...)
	}

	TabQ := newAffinePoint(xQ, yQ).oddMultiples(nOmega)
	var jR jacobianPoint
	var aR affinePoint
	P := zeroPoint().toJacobian()
	for i := len(nafN) - 1; i >= 0; i-- {
		P.double()
		// Generator point
		if nafM[i] != 0 {
			idxM := absolute(nafM[i]) >> 1
			aR = baseOddMultiples[idxM]
			if nafM[i] < 0 {
				aR.neg()
			}
			P.mixadd(P, &aR)
		}
		// Input point
		if nafN[i] != 0 {
			idxN := absolute(nafN[i]) >> 1
			jR = TabQ[idxN]
			if nafN[i] < 0 {
				jR.neg()
			}
			P.add(P, &jR)
		}
	}
	return P.toAffine().toInt()
}

// absolute returns always a positive value.
func absolute(x int32) int32 {
	mask := x >> 31
	return (x + mask) ^ mask
}