File: point.go

package info (click to toggle)
golang-github-cloudflare-circl 1.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,064 kB
  • sloc: asm: 20,492; ansic: 1,292; makefile: 68
file content (358 lines) | stat: -rw-r--r-- 9,843 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
//go:build (!purego && arm64) || (!purego && amd64)
// +build !purego,arm64 !purego,amd64

package p384

import (
	"fmt"
	"math/big"
)

// affinePoint represents an affine point of the curve. The point at
// infinity is (0,0) leveraging that it is not an affine point.
type affinePoint struct{ x, y fp384 }

func newAffinePoint(x, y *big.Int) *affinePoint {
	var P affinePoint
	P.x.SetBigInt(x)
	P.y.SetBigInt(y)
	montEncode(&P.x, &P.x)
	montEncode(&P.y, &P.y)
	return &P
}

func zeroPoint() *affinePoint { return &affinePoint{} }

func (ap affinePoint) String() string {
	if ap.isZero() {
		return "inf"
	}
	return fmt.Sprintf("x: %v\ny: %v", ap.x, ap.y)
}

func (ap *affinePoint) isZero() bool {
	zero := fp384{}
	return ap.x == zero && ap.y == zero
}

func (ap *affinePoint) neg() { fp384Neg(&ap.y, &ap.y) }

func (ap *affinePoint) toInt() (x, y *big.Int) {
	var x1, y1 fp384
	montDecode(&x1, &ap.x)
	montDecode(&y1, &ap.y)
	return x1.BigInt(), y1.BigInt()
}

func (ap *affinePoint) toJacobian() *jacobianPoint {
	var P jacobianPoint
	if ap.isZero() {
		montEncode(&P.x, &fp384{1})
		montEncode(&P.y, &fp384{1})
	} else {
		P.x = ap.x
		P.y = ap.y
		montEncode(&P.z, &fp384{1})
	}
	return &P
}

func (ap *affinePoint) toProjective() *projectivePoint {
	var P projectivePoint
	if ap.isZero() {
		montEncode(&P.y, &fp384{1})
	} else {
		P.x = ap.x
		P.y = ap.y
		montEncode(&P.z, &fp384{1})
	}
	return &P
}

// OddMultiples calculates the points iP for i={1,3,5,7,..., 2^(n-1)-1}
// Ensure that 1 < n < 31, otherwise it returns an empty slice.
func (ap affinePoint) oddMultiples(n uint) []jacobianPoint {
	var t []jacobianPoint
	if n > 1 && n < 31 {
		P := ap.toJacobian()
		s := int32(1) << (n - 1)
		t = make([]jacobianPoint, s)
		t[0] = *P
		_2P := *P
		_2P.double()
		for i := int32(1); i < s; i++ {
			t[i].add(&t[i-1], &_2P)
		}
	}
	return t
}

// p2Point is a point in P^2
type p2Point struct{ x, y, z fp384 }

func (P *p2Point) String() string {
	return fmt.Sprintf("x: %v\ny: %v\nz: %v", P.x, P.y, P.z)
}

func (P *p2Point) neg() { fp384Neg(&P.y, &P.y) }

// condNeg if P is negated if b=1.
func (P *p2Point) cneg(b int) {
	var mY fp384
	fp384Neg(&mY, &P.y)
	fp384Cmov(&P.y, &mY, b)
}

// cmov sets P to Q if b=1.
func (P *p2Point) cmov(Q *p2Point, b int) {
	fp384Cmov(&P.x, &Q.x, b)
	fp384Cmov(&P.y, &Q.y, b)
	fp384Cmov(&P.z, &Q.z, b)
}

func (P *p2Point) toInt() (x, y, z *big.Int) {
	var x1, y1, z1 fp384
	montDecode(&x1, &P.x)
	montDecode(&y1, &P.y)
	montDecode(&z1, &P.z)
	return x1.BigInt(), y1.BigInt(), z1.BigInt()
}

// jacobianPoint represents a point in Jacobian coordinates. The point at
// infinity is any point (x,y,0) such that x and y are different from 0.
type jacobianPoint struct{ p2Point }

func (P *jacobianPoint) isZero() bool {
	zero := fp384{}
	return P.x != zero && P.y != zero && P.z == zero
}

func (P *jacobianPoint) toAffine() *affinePoint {
	var aP affinePoint
	z, z2 := &fp384{}, &fp384{}
	fp384Inv(z, &P.z)
	fp384Sqr(z2, z)
	fp384Mul(&aP.x, &P.x, z2)
	fp384Mul(&aP.y, &P.y, z)
	fp384Mul(&aP.y, &aP.y, z2)
	return &aP
}

func (P *jacobianPoint) cmov(Q *jacobianPoint, b int) { P.p2Point.cmov(&Q.p2Point, b) }

// add calculates P=Q+R such that Q and R are different than the identity point,
// and Q!==R. This function cannot be used for doublings.
func (P *jacobianPoint) add(Q, R *jacobianPoint) {
	if Q.isZero() {
		*P = *R
		return
	} else if R.isZero() {
		*P = *Q
		return
	}

	// Cohen-Miyagi-Ono (1998)
	// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
	X1, Y1, Z1 := &Q.x, &Q.y, &Q.z
	X2, Y2, Z2 := &R.x, &R.y, &R.z
	Z1Z1, Z2Z2, U1, U2 := &fp384{}, &fp384{}, &fp384{}, &fp384{}
	H, HH, HHH, RR := &fp384{}, &fp384{}, &fp384{}, &fp384{}
	V, t4, t5, t6, t7, t8 := &fp384{}, &fp384{}, &fp384{}, &fp384{}, &fp384{}, &fp384{}
	t0, t1, t2, t3, S1, S2 := &fp384{}, &fp384{}, &fp384{}, &fp384{}, &fp384{}, &fp384{}
	fp384Sqr(Z1Z1, Z1)     // Z1Z1 = Z1 ^ 2
	fp384Sqr(Z2Z2, Z2)     // Z2Z2 = Z2 ^ 2
	fp384Mul(U1, X1, Z2Z2) // U1 = X1 * Z2Z2
	fp384Mul(U2, X2, Z1Z1) // U2 = X2 * Z1Z1
	fp384Mul(t0, Z2, Z2Z2) // t0 = Z2 * Z2Z2
	fp384Mul(S1, Y1, t0)   // S1 = Y1 * t0
	fp384Mul(t1, Z1, Z1Z1) // t1 = Z1 * Z1Z1
	fp384Mul(S2, Y2, t1)   // S2 = Y2 * t1
	fp384Sub(H, U2, U1)    // H = U2 - U1
	fp384Sqr(HH, H)        // HH = H ^ 2
	fp384Mul(HHH, H, HH)   // HHH = H * HH
	fp384Sub(RR, S2, S1)   // r = S2 - S1
	fp384Mul(V, U1, HH)    // V = U1 * HH
	fp384Sqr(t2, RR)       // t2 = r ^ 2
	fp384Add(t3, V, V)     // t3 = V + V
	fp384Sub(t4, t2, HHH)  // t4 = t2 - HHH
	fp384Sub(&P.x, t4, t3) // X3 = t4 - t3
	fp384Sub(t5, V, &P.x)  // t5 = V - X3
	fp384Mul(t6, S1, HHH)  // t6 = S1 * HHH
	fp384Mul(t7, RR, t5)   // t7 = r * t5
	fp384Sub(&P.y, t7, t6) // Y3 = t7 - t6
	fp384Mul(t8, Z2, H)    // t8 = Z2 * H
	fp384Mul(&P.z, Z1, t8) // Z3 = Z1 * t8
}

// mixadd calculates P=Q+R such that P and Q different than the identity point,
// and Q not in {P,-P, O}.
func (P *jacobianPoint) mixadd(Q *jacobianPoint, R *affinePoint) {
	if Q.isZero() {
		*P = *R.toJacobian()
		return
	} else if R.isZero() {
		*P = *Q
		return
	}

	z1z1, u2 := &fp384{}, &fp384{}
	fp384Sqr(z1z1, &Q.z)
	fp384Mul(u2, &R.x, z1z1)

	s2 := &fp384{}
	fp384Mul(s2, &R.y, &Q.z)
	fp384Mul(s2, s2, z1z1)
	if Q.x == *u2 {
		if Q.y != *s2 {
			*P = *(zeroPoint().toJacobian())
			return
		}
		*P = *Q
		P.double()
		return
	}

	h, r := &fp384{}, &fp384{}
	fp384Sub(h, u2, &Q.x)
	fp384Mul(&P.z, h, &Q.z)
	fp384Sub(r, s2, &Q.y)

	h2, h3 := &fp384{}, &fp384{}
	fp384Sqr(h2, h)
	fp384Mul(h3, h2, h)
	h3y1 := &fp384{}
	fp384Mul(h3y1, h3, &Q.y)

	h2x1 := &fp384{}
	fp384Mul(h2x1, h2, &Q.x)

	fp384Sqr(&P.x, r)
	fp384Sub(&P.x, &P.x, h3)
	fp384Sub(&P.x, &P.x, h2x1)
	fp384Sub(&P.x, &P.x, h2x1)

	fp384Sub(&P.y, h2x1, &P.x)
	fp384Mul(&P.y, &P.y, r)
	fp384Sub(&P.y, &P.y, h3y1)
}

func (P *jacobianPoint) double() {
	delta, gamma, alpha, alpha2 := &fp384{}, &fp384{}, &fp384{}, &fp384{}
	fp384Sqr(delta, &P.z)
	fp384Sqr(gamma, &P.y)
	fp384Sub(alpha, &P.x, delta)
	fp384Add(alpha2, &P.x, delta)
	fp384Mul(alpha, alpha, alpha2)
	*alpha2 = *alpha
	fp384Add(alpha, alpha, alpha)
	fp384Add(alpha, alpha, alpha2)

	beta := &fp384{}
	fp384Mul(beta, &P.x, gamma)

	beta8 := &fp384{}
	fp384Sqr(&P.x, alpha)
	fp384Add(beta8, beta, beta)
	fp384Add(beta8, beta8, beta8)
	fp384Add(beta8, beta8, beta8)
	fp384Sub(&P.x, &P.x, beta8)

	fp384Add(&P.z, &P.y, &P.z)
	fp384Sqr(&P.z, &P.z)
	fp384Sub(&P.z, &P.z, gamma)
	fp384Sub(&P.z, &P.z, delta)

	fp384Add(beta, beta, beta)
	fp384Add(beta, beta, beta)
	fp384Sub(beta, beta, &P.x)

	fp384Mul(&P.y, alpha, beta)

	fp384Sqr(gamma, gamma)
	fp384Add(gamma, gamma, gamma)
	fp384Add(gamma, gamma, gamma)
	fp384Add(gamma, gamma, gamma)
	fp384Sub(&P.y, &P.y, gamma)
}

func (P *jacobianPoint) toProjective() *projectivePoint {
	var hP projectivePoint
	hP.y = P.y
	fp384Mul(&hP.x, &P.x, &P.z)
	fp384Sqr(&hP.z, &P.z)
	fp384Mul(&hP.z, &hP.z, &P.z)
	return &hP
}

// projectivePoint represents a point in projective homogeneous coordinates.
// The point at infinity is (0,y,0) such that y is different from 0.
type projectivePoint struct{ p2Point }

func (P *projectivePoint) isZero() bool {
	zero := fp384{}
	return P.x == zero && P.y != zero && P.z == zero
}

func (P *projectivePoint) toAffine() *affinePoint {
	var aP affinePoint
	z := &fp384{}
	fp384Inv(z, &P.z)
	fp384Mul(&aP.x, &P.x, z)
	fp384Mul(&aP.y, &P.y, z)
	return &aP
}

// add calculates P=Q+R using complete addition formula for prime groups.
func (P *projectivePoint) completeAdd(Q, R *projectivePoint) {
	// Reference:
	//   "Complete addition formulas for prime order elliptic curves" by
	//   Costello-Renes-Batina. [Alg.4] (eprint.iacr.org/2015/1060).
	X1, Y1, Z1 := &Q.x, &Q.y, &Q.z
	X2, Y2, Z2 := &R.x, &R.y, &R.z
	X3, Y3, Z3 := &fp384{}, &fp384{}, &fp384{}
	t0, t1, t2, t3, t4 := &fp384{}, &fp384{}, &fp384{}, &fp384{}, &fp384{}
	fp384Mul(t0, X1, X2)  // 1.  t0 ← X1 · X2
	fp384Mul(t1, Y1, Y2)  // 2.  t1 ← Y1 · Y2
	fp384Mul(t2, Z1, Z2)  // 3.  t2 ← Z1 · Z2
	fp384Add(t3, X1, Y1)  // 4.  t3 ← X1 + Y1
	fp384Add(t4, X2, Y2)  // 5.  t4 ← X2 + Y2
	fp384Mul(t3, t3, t4)  // 6.  t3 ← t3 · t4
	fp384Add(t4, t0, t1)  // 7.  t4 ← t0 + t1
	fp384Sub(t3, t3, t4)  // 8.  t3 ← t3 − t4
	fp384Add(t4, Y1, Z1)  // 9.  t4 ← Y1 + Z1
	fp384Add(X3, Y2, Z2)  // 10. X3 ← Y2 + Z2
	fp384Mul(t4, t4, X3)  // 11. t4 ← t4 · X3
	fp384Add(X3, t1, t2)  // 12. X3 ← t1 + t2
	fp384Sub(t4, t4, X3)  // 13. t4 ← t4 − X3
	fp384Add(X3, X1, Z1)  // 14. X3 ← X1 + Z1
	fp384Add(Y3, X2, Z2)  // 15. Y3 ← X2 + Z2
	fp384Mul(X3, X3, Y3)  // 16. X3 ← X3 · Y3
	fp384Add(Y3, t0, t2)  // 17. Y3 ← t0 + t2
	fp384Sub(Y3, X3, Y3)  // 18. Y3 ← X3 − Y3
	fp384Mul(Z3, &bb, t2) // 19. Z3 ←  b · t2
	fp384Sub(X3, Y3, Z3)  // 20. X3 ← Y3 − Z3
	fp384Add(Z3, X3, X3)  // 21. Z3 ← X3 + X3
	fp384Add(X3, X3, Z3)  // 22. X3 ← X3 + Z3
	fp384Sub(Z3, t1, X3)  // 23. Z3 ← t1 − X3
	fp384Add(X3, t1, X3)  // 24. X3 ← t1 + X3
	fp384Mul(Y3, &bb, Y3) // 25. Y3 ←  b · Y3
	fp384Add(t1, t2, t2)  // 26. t1 ← t2 + t2
	fp384Add(t2, t1, t2)  // 27. t2 ← t1 + t2
	fp384Sub(Y3, Y3, t2)  // 28. Y3 ← Y3 − t2
	fp384Sub(Y3, Y3, t0)  // 29. Y3 ← Y3 − t0
	fp384Add(t1, Y3, Y3)  // 30. t1 ← Y3 + Y3
	fp384Add(Y3, t1, Y3)  // 31. Y3 ← t1 + Y3
	fp384Add(t1, t0, t0)  // 32. t1 ← t0 + t0
	fp384Add(t0, t1, t0)  // 33. t0 ← t1 + t0
	fp384Sub(t0, t0, t2)  // 34. t0 ← t0 − t2
	fp384Mul(t1, t4, Y3)  // 35. t1 ← t4 · Y3
	fp384Mul(t2, t0, Y3)  // 36. t2 ← t0 · Y3
	fp384Mul(Y3, X3, Z3)  // 37. Y3 ← X3 · Z3
	fp384Add(Y3, Y3, t2)  // 38. Y3 ← Y3 + t2
	fp384Mul(X3, t3, X3)  // 39. X3 ← t3 · X3
	fp384Sub(X3, X3, t1)  // 40. X3 ← X3 − t1
	fp384Mul(Z3, t4, Z3)  // 41. Z3 ← t4 · Z3
	fp384Mul(t1, t3, t0)  // 42. t1 ← t3 · t0
	fp384Add(Z3, Z3, t1)  // 43. Z3 ← Z3 + t1
	P.x, P.y, P.z = *X3, *Y3, *Z3
}