1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
package hybrid
import (
"crypto/ecdh"
cryptoRand "crypto/rand"
"github.com/cloudflare/circl/kem"
"github.com/cloudflare/circl/xof"
)
type cPublicKey struct {
scheme cScheme
key *ecdh.PublicKey
}
type cPrivateKey struct {
scheme cScheme
key *ecdh.PrivateKey
}
type cScheme struct {
curve ecdh.Curve
}
var p256Kem = &cScheme{ecdh.P256()}
func (sch cScheme) Name() string {
switch sch.curve {
case ecdh.P256():
return "P-256"
case ecdh.P384():
return "P-384"
case ecdh.P521():
return "P-521"
default:
panic("unsupported curve")
}
}
func (sch cScheme) PublicKeySize() int {
switch sch.curve {
case ecdh.P256():
return 65
case ecdh.P384():
return 97
case ecdh.P521():
return 133
default:
panic("unsupported curve")
}
}
func (sch cScheme) PrivateKeySize() int {
switch sch.curve {
case ecdh.P256():
return 32
case ecdh.P384():
return 48
case ecdh.P521():
return 66
default:
panic("unsupported curve")
}
}
func (sch cScheme) SeedSize() int {
return sch.PrivateKeySize()
}
func (sch cScheme) SharedKeySize() int {
return sch.PrivateKeySize()
}
func (sch cScheme) CiphertextSize() int {
return sch.PublicKeySize()
}
func (sch cScheme) EncapsulationSeedSize() int {
return sch.SeedSize()
}
func (sk *cPrivateKey) Scheme() kem.Scheme { return sk.scheme }
func (pk *cPublicKey) Scheme() kem.Scheme { return pk.scheme }
func (sk *cPrivateKey) MarshalBinary() ([]byte, error) {
return sk.key.Bytes(), nil
}
func (sk *cPrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*cPrivateKey)
if !ok {
return false
}
if oth.scheme != sk.scheme {
return false
}
return oth.key.Equal(sk.key)
}
func (sk *cPrivateKey) Public() kem.PublicKey {
pk := sk.key.PublicKey()
return &cPublicKey{scheme: sk.scheme, key: pk}
}
func (pk *cPublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*cPublicKey)
if !ok {
return false
}
if oth.scheme != pk.scheme {
return false
}
return oth.key.Equal(pk.key)
}
func (pk *cPublicKey) MarshalBinary() ([]byte, error) {
return pk.key.Bytes(), nil
}
func (sch cScheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
seed := make([]byte, sch.SeedSize())
_, err := cryptoRand.Read(seed)
if err != nil {
return nil, nil, err
}
pk, sk := sch.DeriveKeyPair(seed)
return pk, sk, nil
}
func (sch cScheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != sch.SeedSize() {
panic(kem.ErrSeedSize)
}
h := xof.SHAKE256.New()
_, _ = h.Write(seed)
privKey, err := sch.curve.GenerateKey(h)
if err != nil {
panic(err)
}
pubKey := privKey.PublicKey()
sk := cPrivateKey{scheme: sch, key: privKey}
pk := cPublicKey{scheme: sch, key: pubKey}
return &pk, &sk
}
func (sch cScheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
seed := make([]byte, sch.EncapsulationSeedSize())
_, err = cryptoRand.Read(seed)
if err != nil {
return
}
return sch.EncapsulateDeterministically(pk, seed)
}
func (pk *cPublicKey) X(sk *cPrivateKey) []byte {
if pk.scheme != sk.scheme {
panic(kem.ErrTypeMismatch)
}
sharedKey, err := sk.key.ECDH(pk.key)
if err != nil {
// ECDH cannot fail for NIST curves as NewPublicKey rejects
// invalid points and the point in infinity, and NewPrivateKey
// rejects invalid scalars and the zero value.
panic(err)
}
return sharedKey
}
func (sch cScheme) EncapsulateDeterministically(
pk kem.PublicKey, seed []byte,
) (ct, ss []byte, err error) {
if len(seed) != sch.EncapsulationSeedSize() {
return nil, nil, kem.ErrSeedSize
}
pub, ok := pk.(*cPublicKey)
if !ok || pub.scheme != sch {
return nil, nil, kem.ErrTypeMismatch
}
pk2, sk2 := sch.DeriveKeyPair(seed)
ss = pub.X(sk2.(*cPrivateKey))
ct, _ = pk2.MarshalBinary()
return
}
func (sch cScheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != sch.CiphertextSize() {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*cPrivateKey)
if !ok || priv.scheme != sch {
return nil, kem.ErrTypeMismatch
}
pk, err := sch.UnmarshalBinaryPublicKey(ct)
if err != nil {
return nil, err
}
ss := pk.(*cPublicKey).X(priv)
return ss, nil
}
func (sch cScheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
if len(buf) != sch.PublicKeySize() {
return nil, kem.ErrPubKeySize
}
key, err := sch.curve.NewPublicKey(buf)
if err != nil {
return nil, err
}
return &cPublicKey{sch, key}, nil
}
func (sch cScheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != sch.PrivateKeySize() {
return nil, kem.ErrPrivKeySize
}
key, err := sch.curve.NewPrivateKey(buf)
if err != nil {
return nil, err
}
return &cPrivateKey{sch, key}, nil
}
|