1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
// Code generated from pkg.templ.go. DO NOT EDIT.
// Package mlkem1024 implements the IND-CCA2 secure key encapsulation mechanism
// ML-KEM-1024 as defined in FIPS203.
package mlkem1024
import (
"bytes"
"crypto/subtle"
"io"
cryptoRand "crypto/rand"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/kem"
cpapke "github.com/cloudflare/circl/pke/kyber/kyber1024"
)
const (
// Size of seed for NewKeyFromSeed
KeySeedSize = cpapke.KeySeedSize + 32
// Size of seed for EncapsulateTo.
EncapsulationSeedSize = 32
// Size of the established shared key.
SharedKeySize = 32
// Size of the encapsulated shared key.
CiphertextSize = cpapke.CiphertextSize
// Size of a packed public key.
PublicKeySize = cpapke.PublicKeySize
// Size of a packed private key.
PrivateKeySize = cpapke.PrivateKeySize + cpapke.PublicKeySize + 64
)
// Type of a ML-KEM-1024 public key
type PublicKey struct {
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
}
// Type of a ML-KEM-1024 private key
type PrivateKey struct {
sk *cpapke.PrivateKey
pk *cpapke.PublicKey
hpk [32]byte // H(pk)
z [32]byte
}
// NewKeyFromSeed derives a public/private keypair deterministically
// from the given seed.
//
// Panics if seed is not of length KeySeedSize.
func NewKeyFromSeed(seed []byte) (*PublicKey, *PrivateKey) {
var sk PrivateKey
var pk PublicKey
if len(seed) != KeySeedSize {
panic("seed must be of length KeySeedSize")
}
pk.pk, sk.sk = cpapke.NewKeyFromSeedMLKEM(seed[:cpapke.KeySeedSize])
sk.pk = pk.pk
copy(sk.z[:], seed[cpapke.KeySeedSize:])
// Compute H(pk)
var ppk [cpapke.PublicKeySize]byte
sk.pk.Pack(ppk[:])
h := sha3.New256()
h.Write(ppk[:])
h.Read(sk.hpk[:])
copy(pk.hpk[:], sk.hpk[:])
return &pk, &sk
}
// GenerateKeyPair generates public and private keys using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKeyPair(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [KeySeedSize]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := NewKeyFromSeed(seed[:])
return pk, sk, nil
}
// EncapsulateTo generates a shared key and ciphertext that contains it
// for the public key using randomness from seed and writes the shared key
// to ss and ciphertext to ct.
//
// Panics if ss, ct or seed are not of length SharedKeySize, CiphertextSize
// and EncapsulationSeedSize respectively.
//
// seed may be nil, in which case crypto/rand.Reader is used to generate one.
func (pk *PublicKey) EncapsulateTo(ct, ss []byte, seed []byte) {
if seed == nil {
seed = make([]byte, EncapsulationSeedSize)
if _, err := cryptoRand.Read(seed[:]); err != nil {
panic(err)
}
} else {
if len(seed) != EncapsulationSeedSize {
panic("seed must be of length EncapsulationSeedSize")
}
}
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
var m [32]byte
copy(m[:], seed)
// (K', r) = G(m ‖ H(pk))
var kr [64]byte
g := sha3.New512()
g.Write(m[:])
g.Write(pk.hpk[:])
g.Read(kr[:])
// c = Kyber.CPAPKE.Enc(pk, m, r)
pk.pk.EncryptTo(ct, m[:], kr[32:])
copy(ss, kr[:SharedKeySize])
}
// DecapsulateTo computes the shared key which is encapsulated in ct
// for the private key.
//
// Panics if ct or ss are not of length CiphertextSize and SharedKeySize
// respectively.
func (sk *PrivateKey) DecapsulateTo(ss, ct []byte) {
if len(ct) != CiphertextSize {
panic("ct must be of length CiphertextSize")
}
if len(ss) != SharedKeySize {
panic("ss must be of length SharedKeySize")
}
// m' = Kyber.CPAPKE.Dec(sk, ct)
var m2 [32]byte
sk.sk.DecryptTo(m2[:], ct)
// (K'', r') = G(m' ‖ H(pk))
var kr2 [64]byte
g := sha3.New512()
g.Write(m2[:])
g.Write(sk.hpk[:])
g.Read(kr2[:])
// c' = Kyber.CPAPKE.Enc(pk, m', r')
var ct2 [CiphertextSize]byte
sk.pk.EncryptTo(ct2[:], m2[:], kr2[32:])
var ss2 [SharedKeySize]byte
// Compute shared secret in case of rejection: ss₂ = PRF(z ‖ c)
prf := sha3.NewShake256()
prf.Write(sk.z[:])
prf.Write(ct[:CiphertextSize])
prf.Read(ss2[:])
// Set ss2 to the real shared secret if c = c'.
subtle.ConstantTimeCopy(
subtle.ConstantTimeCompare(ct, ct2[:]),
ss2[:],
kr2[:SharedKeySize],
)
copy(ss, ss2[:])
}
// Packs sk to buf.
//
// Panics if buf is not of size PrivateKeySize.
func (sk *PrivateKey) Pack(buf []byte) {
if len(buf) != PrivateKeySize {
panic("buf must be of length PrivateKeySize")
}
sk.sk.Pack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk.Pack(buf[:cpapke.PublicKeySize])
buf = buf[cpapke.PublicKeySize:]
copy(buf, sk.hpk[:])
buf = buf[32:]
copy(buf, sk.z[:])
}
// Unpacks sk from buf.
//
// Panics if buf is not of size PrivateKeySize.
//
// Returns an error if buf is not of size PrivateKeySize, or private key
// doesn't pass the ML-KEM decapsulation key check.
func (sk *PrivateKey) Unpack(buf []byte) error {
if len(buf) != PrivateKeySize {
return kem.ErrPrivKeySize
}
sk.sk = new(cpapke.PrivateKey)
sk.sk.Unpack(buf[:cpapke.PrivateKeySize])
buf = buf[cpapke.PrivateKeySize:]
sk.pk = new(cpapke.PublicKey)
sk.pk.Unpack(buf[:cpapke.PublicKeySize])
var hpk [32]byte
h := sha3.New256()
h.Write(buf[:cpapke.PublicKeySize])
h.Read(hpk[:])
buf = buf[cpapke.PublicKeySize:]
copy(sk.hpk[:], buf[:32])
copy(sk.z[:], buf[32:])
if !bytes.Equal(hpk[:], sk.hpk[:]) {
return kem.ErrPrivKey
}
return nil
}
// Packs pk to buf.
//
// Panics if buf is not of size PublicKeySize.
func (pk *PublicKey) Pack(buf []byte) {
if len(buf) != PublicKeySize {
panic("buf must be of length PublicKeySize")
}
pk.pk.Pack(buf)
}
// Unpacks pk from buf.
//
// Returns an error if buf is not of size PublicKeySize, or the public key
// is not normalized.
func (pk *PublicKey) Unpack(buf []byte) error {
if len(buf) != PublicKeySize {
return kem.ErrPubKeySize
}
pk.pk = new(cpapke.PublicKey)
if err := pk.pk.UnpackMLKEM(buf); err != nil {
return err
}
// Compute cached H(pk)
h := sha3.New256()
h.Write(buf)
h.Read(pk.hpk[:])
return nil
}
// Boilerplate down below for the KEM scheme API.
type scheme struct{}
var sch kem.Scheme = &scheme{}
// Scheme returns a KEM interface.
func Scheme() kem.Scheme { return sch }
func (*scheme) Name() string { return "ML-KEM-1024" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SeedSize() int { return KeySeedSize }
func (*scheme) SharedKeySize() int { return SharedKeySize }
func (*scheme) CiphertextSize() int { return CiphertextSize }
func (*scheme) EncapsulationSeedSize() int { return EncapsulationSeedSize }
func (sk *PrivateKey) Scheme() kem.Scheme { return sch }
func (pk *PublicKey) Scheme() kem.Scheme { return sch }
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
var ret [PrivateKeySize]byte
sk.Pack(ret[:])
return ret[:], nil
}
func (sk *PrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*PrivateKey)
if !ok {
return false
}
if sk.pk == nil && oth.pk == nil {
return true
}
if sk.pk == nil || oth.pk == nil {
return false
}
if !bytes.Equal(sk.hpk[:], oth.hpk[:]) ||
subtle.ConstantTimeCompare(sk.z[:], oth.z[:]) != 1 {
return false
}
return sk.sk.Equal(oth.sk)
}
func (pk *PublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*PublicKey)
if !ok {
return false
}
if pk.pk == nil && oth.pk == nil {
return true
}
if pk.pk == nil || oth.pk == nil {
return false
}
return bytes.Equal(pk.hpk[:], oth.hpk[:])
}
func (sk *PrivateKey) Public() kem.PublicKey {
pk := new(PublicKey)
pk.pk = sk.pk
copy(pk.hpk[:], sk.hpk[:])
return pk
}
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
var ret [PublicKeySize]byte
pk.Pack(ret[:])
return ret[:], nil
}
func (*scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
return GenerateKeyPair(cryptoRand.Reader)
}
func (*scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
if len(seed) != KeySeedSize {
panic(kem.ErrSeedSize)
}
return NewKeyFromSeed(seed[:])
}
func (*scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, nil)
return
}
func (*scheme) EncapsulateDeterministically(pk kem.PublicKey, seed []byte) (
ct, ss []byte, err error) {
if len(seed) != EncapsulationSeedSize {
return nil, nil, kem.ErrSeedSize
}
ct = make([]byte, CiphertextSize)
ss = make([]byte, SharedKeySize)
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
pub.EncapsulateTo(ct, ss, seed)
return
}
func (*scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != CiphertextSize {
return nil, kem.ErrCiphertextSize
}
priv, ok := sk.(*PrivateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
ss := make([]byte, SharedKeySize)
priv.DecapsulateTo(ss, ct)
return ss, nil
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
var ret PublicKey
if err := ret.Unpack(buf); err != nil {
return nil, err
}
return &ret, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
if len(buf) != PrivateKeySize {
return nil, kem.ErrPrivKeySize
}
var ret PrivateKey
if err := ret.Unpack(buf); err != nil {
return nil, err
}
return &ret, nil
}
|