1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
package xwing
import (
"bytes"
cryptoRand "crypto/rand"
"crypto/subtle"
"github.com/cloudflare/circl/kem"
"github.com/cloudflare/circl/kem/mlkem/mlkem768"
)
// This file contains the boilerplate code to connect X-Wing to the
// generic KEM API.
// Returns the generic KEM interface for X-Wing PQ/T hybrid KEM.
func Scheme() kem.Scheme { return scheme{} }
type scheme struct{}
func (scheme) Name() string { return "X-Wing" }
func (scheme) PublicKeySize() int { return PublicKeySize }
func (scheme) PrivateKeySize() int { return PrivateKeySize }
func (scheme) SeedSize() int { return SeedSize }
func (scheme) EncapsulationSeedSize() int { return EncapsulationSeedSize }
func (scheme) SharedKeySize() int { return SharedKeySize }
func (scheme) CiphertextSize() int { return CiphertextSize }
func (*PrivateKey) Scheme() kem.Scheme { return scheme{} }
func (*PublicKey) Scheme() kem.Scheme { return scheme{} }
func (sch scheme) Encapsulate(pk kem.PublicKey) (ct, ss []byte, err error) {
var seed [EncapsulationSeedSize]byte
_, err = cryptoRand.Read(seed[:])
if err != nil {
return
}
return sch.EncapsulateDeterministically(pk, seed[:])
}
func (scheme) EncapsulateDeterministically(
pk kem.PublicKey, seed []byte,
) ([]byte, []byte, error) {
if len(seed) != EncapsulationSeedSize {
return nil, nil, kem.ErrSeedSize
}
pub, ok := pk.(*PublicKey)
if !ok {
return nil, nil, kem.ErrTypeMismatch
}
var (
ct [CiphertextSize]byte
ss [SharedKeySize]byte
)
pub.EncapsulateTo(ct[:], ss[:], seed)
return ct[:], ss[:], nil
}
func (scheme) UnmarshalBinaryPublicKey(buf []byte) (kem.PublicKey, error) {
var pk PublicKey
if len(buf) != PublicKeySize {
return nil, kem.ErrPubKeySize
}
if err := pk.Unpack(buf); err != nil {
return nil, err
}
return &pk, nil
}
func (scheme) UnmarshalBinaryPrivateKey(buf []byte) (kem.PrivateKey, error) {
var sk PrivateKey
if len(buf) != PrivateKeySize {
return nil, kem.ErrPrivKeySize
}
sk.Unpack(buf)
return &sk, nil
}
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
var ret [PrivateKeySize]byte
sk.Pack(ret[:])
return ret[:], nil
}
func (sk *PrivateKey) Equal(other kem.PrivateKey) bool {
oth, ok := other.(*PrivateKey)
if !ok {
return false
}
return sk.m.Equal(&oth.m) &&
subtle.ConstantTimeCompare(oth.x[:], sk.x[:]) == 1
}
func (sk *PrivateKey) Public() kem.PublicKey {
var pk PublicKey
pk.m = *(sk.m.Public().(*mlkem768.PublicKey))
pk.x = sk.xpk
return &pk
}
func (pk *PublicKey) Equal(other kem.PublicKey) bool {
oth, ok := other.(*PublicKey)
if !ok {
return false
}
return pk.m.Equal(&oth.m) && bytes.Equal(pk.x[:], oth.x[:])
}
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
var ret [PublicKeySize]byte
pk.Pack(ret[:])
return ret[:], nil
}
func (scheme) DeriveKeyPair(seed []byte) (kem.PublicKey, kem.PrivateKey) {
sk, pk := DeriveKeyPair(seed)
return pk, sk
}
func (scheme) GenerateKeyPair() (kem.PublicKey, kem.PrivateKey, error) {
sk, pk, err := GenerateKeyPair(nil)
return pk, sk, err
}
func (scheme) Decapsulate(sk kem.PrivateKey, ct []byte) ([]byte, error) {
if len(ct) != CiphertextSize {
return nil, kem.ErrCiphertextSize
}
var ss [SharedKeySize]byte
priv, ok := sk.(*PrivateKey)
if !ok {
return nil, kem.ErrTypeMismatch
}
priv.DecapsulateTo(ss[:], ct[:])
return ss[:], nil
}
|