File: fp.go

package info (click to toggle)
golang-github-cloudflare-circl 1.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,064 kB
  • sloc: asm: 20,492; ansic: 1,292; makefile: 68
file content (205 lines) | stat: -rw-r--r-- 4,510 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Package fp25519 provides prime field arithmetic over GF(2^255-19).
package fp25519

import (
	"errors"

	"github.com/cloudflare/circl/internal/conv"
)

// Size in bytes of an element.
const Size = 32

// Elt is a prime field element.
type Elt [Size]byte

func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }

// p is the prime modulus 2^255-19.
var p = Elt{
	0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
}

// P returns the prime modulus 2^255-19.
func P() Elt { return p }

// ToBytes stores in b the little-endian byte representation of x.
func ToBytes(b []byte, x *Elt) error {
	if len(b) != Size {
		return errors.New("wrong size")
	}
	Modp(x)
	copy(b, x[:])
	return nil
}

// IsZero returns true if x is equal to 0.
func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }

// SetOne assigns x=1.
func SetOne(x *Elt) { *x = Elt{}; x[0] = 1 }

// Neg calculates z = -x.
func Neg(z, x *Elt) { Sub(z, &p, x) }

// InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue, which is
// indicated by returning isQR = true. Otherwise, when x/y is a quadratic
// non-residue, z will have an undetermined value and isQR = false.
func InvSqrt(z, x, y *Elt) (isQR bool) {
	sqrtMinusOne := &Elt{
		0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
		0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
		0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
		0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b,
	}
	t0, t1, t2, t3 := &Elt{}, &Elt{}, &Elt{}, &Elt{}

	Mul(t0, x, y)   // t0 = u*v
	Sqr(t1, y)      // t1 = v^2
	Mul(t2, t0, t1) // t2 = u*v^3
	Sqr(t0, t1)     // t0 = v^4
	Mul(t1, t0, t2) // t1 = u*v^7

	var Tab [4]*Elt
	Tab[0] = &Elt{}
	Tab[1] = &Elt{}
	Tab[2] = t3
	Tab[3] = t1

	*Tab[0] = *t1
	Sqr(Tab[0], Tab[0])
	Sqr(Tab[1], Tab[0])
	Sqr(Tab[1], Tab[1])
	Mul(Tab[1], Tab[1], Tab[3])
	Mul(Tab[0], Tab[0], Tab[1])
	Sqr(Tab[0], Tab[0])
	Mul(Tab[0], Tab[0], Tab[1])
	Sqr(Tab[1], Tab[0])
	for i := 0; i < 4; i++ {
		Sqr(Tab[1], Tab[1])
	}
	Mul(Tab[1], Tab[1], Tab[0])
	Sqr(Tab[2], Tab[1])
	for i := 0; i < 4; i++ {
		Sqr(Tab[2], Tab[2])
	}
	Mul(Tab[2], Tab[2], Tab[0])
	Sqr(Tab[1], Tab[2])
	for i := 0; i < 14; i++ {
		Sqr(Tab[1], Tab[1])
	}
	Mul(Tab[1], Tab[1], Tab[2])
	Sqr(Tab[2], Tab[1])
	for i := 0; i < 29; i++ {
		Sqr(Tab[2], Tab[2])
	}
	Mul(Tab[2], Tab[2], Tab[1])
	Sqr(Tab[1], Tab[2])
	for i := 0; i < 59; i++ {
		Sqr(Tab[1], Tab[1])
	}
	Mul(Tab[1], Tab[1], Tab[2])
	for i := 0; i < 5; i++ {
		Sqr(Tab[1], Tab[1])
	}
	Mul(Tab[1], Tab[1], Tab[0])
	Sqr(Tab[2], Tab[1])
	for i := 0; i < 124; i++ {
		Sqr(Tab[2], Tab[2])
	}
	Mul(Tab[2], Tab[2], Tab[1])
	Sqr(Tab[2], Tab[2])
	Sqr(Tab[2], Tab[2])
	Mul(Tab[2], Tab[2], Tab[3])

	Mul(z, t3, t2) // z = xy^(p+3)/8 = xy^3*(xy^7)^(p-5)/8
	// Checking whether y z^2 == x
	Sqr(t0, z)     // t0 = z^2
	Mul(t0, t0, y) // t0 = yz^2
	Sub(t1, t0, x) // t1 = t0-u
	Add(t2, t0, x) // t2 = t0+u
	if IsZero(t1) {
		return true
	} else if IsZero(t2) {
		Mul(z, z, sqrtMinusOne) // z = z*sqrt(-1)
		return true
	} else {
		return false
	}
}

// Inv calculates z = 1/x mod p.
func Inv(z, x *Elt) {
	x0, x1, x2 := &Elt{}, &Elt{}, &Elt{}
	Sqr(x1, x)
	Sqr(x0, x1)
	Sqr(x0, x0)
	Mul(x0, x0, x)
	Mul(z, x0, x1)
	Sqr(x1, z)
	Mul(x0, x0, x1)
	Sqr(x1, x0)
	for i := 0; i < 4; i++ {
		Sqr(x1, x1)
	}
	Mul(x0, x0, x1)
	Sqr(x1, x0)
	for i := 0; i < 9; i++ {
		Sqr(x1, x1)
	}
	Mul(x1, x1, x0)
	Sqr(x2, x1)
	for i := 0; i < 19; i++ {
		Sqr(x2, x2)
	}
	Mul(x2, x2, x1)
	for i := 0; i < 10; i++ {
		Sqr(x2, x2)
	}
	Mul(x2, x2, x0)
	Sqr(x0, x2)
	for i := 0; i < 49; i++ {
		Sqr(x0, x0)
	}
	Mul(x0, x0, x2)
	Sqr(x1, x0)
	for i := 0; i < 99; i++ {
		Sqr(x1, x1)
	}
	Mul(x1, x1, x0)
	for i := 0; i < 50; i++ {
		Sqr(x1, x1)
	}
	Mul(x1, x1, x2)
	for i := 0; i < 5; i++ {
		Sqr(x1, x1)
	}
	Mul(z, z, x1)
}

// Cmov assigns y to x if n is 1.
func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }

// Cswap interchanges x and y if n is 1.
func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }

// Add calculates z = x+y mod p.
func Add(z, x, y *Elt) { add(z, x, y) }

// Sub calculates z = x-y mod p.
func Sub(z, x, y *Elt) { sub(z, x, y) }

// AddSub calculates (x,y) = (x+y mod p, x-y mod p).
func AddSub(x, y *Elt) { addsub(x, y) }

// Mul calculates z = x*y mod p.
func Mul(z, x, y *Elt) { mul(z, x, y) }

// Sqr calculates z = x^2 mod p.
func Sqr(z, x *Elt) { sqr(z, x) }

// Modp ensures that z is between [0,p-1].
func Modp(z *Elt) { modp(z) }