1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Package oprf provides Verifiable, Oblivious Pseudo-Random Functions.
//
// An Oblivious Pseudorandom Function (OPRFs) is a two-party protocol for
// computing the output of a PRF. One party (the server) holds the PRF secret
// key, and the other (the client) holds the PRF input.
//
// This package is compatible with the OPRF specification at RFC-9497 [1].
//
// # Protocol Overview
//
// This diagram shows the steps of the protocol that are common for all operation modes.
//
// Client(info*) Server(sk, pk, info*)
// =================================================================
// finData, evalReq = Blind(input)
//
// evalReq
// ---------->
//
// evaluation = Evaluate(evalReq, info*)
//
// evaluation
// <----------
//
// output = Finalize(finData, evaluation, info*)
//
// # Operation Modes
//
// Each operation mode provides different properties to the PRF.
//
// Base Mode: Provides obliviousness to the PRF evaluation, i.e., it ensures
// that the server does not learn anything about the client's input and output
// during the Evaluation step.
//
// Verifiable Mode: Extends the Base mode allowing the client to verify that
// Server used the private key that corresponds to the public key.
//
// Partial Oblivious Mode: Extends the Verifiable mode by including shared
// public information to the PRF input.
//
// All three modes can perform batches of PRF evaluations, so passing an array
// of inputs will produce an array of outputs.
//
// # References
//
// [1] RFC-9497: https://www.rfc-editor.org/info/rfc9497
package oprf
import (
"crypto"
"encoding/binary"
"errors"
"hash"
"io"
"math"
"github.com/cloudflare/circl/group"
"github.com/cloudflare/circl/zk/dleq"
)
const (
version = "OPRFV1-"
finalizeDST = "Finalize"
hashToGroupDST = "HashToGroup-"
hashToScalarDST = "HashToScalar-"
deriveKeyPairDST = "DeriveKeyPair"
infoLabel = "Info"
)
type Mode = uint8
const (
BaseMode Mode = 0x00
VerifiableMode Mode = 0x01
PartialObliviousMode Mode = 0x02
)
func isValidMode(m Mode) bool {
return m == BaseMode || m == VerifiableMode || m == PartialObliviousMode
}
type Suite interface {
Identifier() string
Group() group.Group
Hash() crypto.Hash
cannotBeImplementedExternally()
}
var (
// SuiteRistretto255 represents the OPRF with Ristretto255 and SHA-512
SuiteRistretto255 Suite = params{identifier: "ristretto255-SHA512", group: group.Ristretto255, hash: crypto.SHA512}
// SuiteP256 represents the OPRF with P-256 and SHA-256.
SuiteP256 Suite = params{identifier: "P256-SHA256", group: group.P256, hash: crypto.SHA256}
// SuiteP384 represents the OPRF with P-384 and SHA-384.
SuiteP384 Suite = params{identifier: "P384-SHA384", group: group.P384, hash: crypto.SHA384}
// SuiteP521 represents the OPRF with P-521 and SHA-512.
SuiteP521 Suite = params{identifier: "P521-SHA512", group: group.P521, hash: crypto.SHA512}
)
func GetSuite(identifier string) (Suite, error) {
for _, suite := range []Suite{SuiteRistretto255, SuiteP256, SuiteP384, SuiteP521} {
if suite.Identifier() == identifier {
return suite, nil
}
}
return nil, ErrInvalidSuite
}
func NewClient(s Suite) Client {
p := s.(params)
p.m = BaseMode
return Client{client{p}}
}
func NewVerifiableClient(s Suite, server *PublicKey) VerifiableClient {
p, ok := s.(params)
if !ok || server == nil {
panic(ErrNoKey)
}
p.m = VerifiableMode
return VerifiableClient{client{p}, server}
}
func NewPartialObliviousClient(s Suite, server *PublicKey) PartialObliviousClient {
p, ok := s.(params)
if !ok || server == nil {
panic(ErrNoKey)
}
p.m = PartialObliviousMode
return PartialObliviousClient{client{p}, server}
}
func NewServer(s Suite, key *PrivateKey) Server {
p, ok := s.(params)
if !ok || key == nil {
panic(ErrNoKey)
}
p.m = BaseMode
return Server{server{p, key}}
}
func NewVerifiableServer(s Suite, key *PrivateKey) VerifiableServer {
p, ok := s.(params)
if !ok || key == nil {
panic(ErrNoKey)
}
p.m = VerifiableMode
return VerifiableServer{server{p, key}}
}
func NewPartialObliviousServer(s Suite, key *PrivateKey) PartialObliviousServer {
p, ok := s.(params)
if !ok || key == nil {
panic(ErrNoKey)
}
p.m = PartialObliviousMode
return PartialObliviousServer{server{p, key}}
}
type params struct {
m Mode
group group.Group
hash crypto.Hash
identifier string
}
func (p params) cannotBeImplementedExternally() {}
func (p params) String() string { return p.Identifier() }
func (p params) Group() group.Group { return p.group }
func (p params) Hash() crypto.Hash { return p.hash }
func (p params) Identifier() string { return p.identifier }
func (p params) getDST(name string) []byte {
return append(append(append(append(
[]byte{},
[]byte(name)...),
[]byte(version)...),
[]byte{p.m, byte('-')}...),
[]byte(p.identifier)...)
}
func (p params) scalarFromInfo(info []byte) (group.Scalar, error) {
if len(info) > math.MaxUint16 {
return nil, ErrInvalidInfo
}
lenInfo := []byte{0, 0}
binary.BigEndian.PutUint16(lenInfo, uint16(len(info)))
framedInfo := append(append(append([]byte{},
[]byte(infoLabel)...),
lenInfo...),
info...)
return p.group.HashToScalar(framedInfo, p.getDST(hashToScalarDST)), nil
}
func (p params) finalizeHash(h hash.Hash, input, info, element []byte) []byte {
h.Reset()
lenBuf := []byte{0, 0}
binary.BigEndian.PutUint16(lenBuf, uint16(len(input)))
mustWrite(h, lenBuf)
mustWrite(h, input)
if p.m == PartialObliviousMode {
binary.BigEndian.PutUint16(lenBuf, uint16(len(info)))
mustWrite(h, lenBuf)
mustWrite(h, info)
}
binary.BigEndian.PutUint16(lenBuf, uint16(len(element)))
mustWrite(h, lenBuf)
mustWrite(h, element)
mustWrite(h, []byte(finalizeDST))
return h.Sum(nil)
}
func (p params) getDLEQParams() (out dleq.Params) {
out.G = p.group
out.H = p.hash
out.DST = p.getDST("")
return
}
func mustWrite(h io.Writer, bytes []byte) {
bytesLen, err := h.Write(bytes)
if err != nil {
panic(err)
}
if len(bytes) != bytesLen {
panic("oprf: failed to write")
}
}
var (
ErrInvalidSuite = errors.New("oprf: invalid suite")
ErrInvalidMode = errors.New("oprf: invalid mode")
ErrDeriveKeyPairError = errors.New("oprf: key pair derivation failed")
ErrInvalidInput = errors.New("oprf: invalid input")
ErrInvalidSeed = errors.New("oprf: invalid seed size")
ErrInvalidInfo = errors.New("oprf: invalid info")
ErrInvalidProof = errors.New("oprf: proof verification failed")
ErrInverseZero = errors.New("oprf: inverting a zero value")
ErrNoKey = errors.New("oprf: must provide a key")
)
type (
Blind = group.Scalar
Blinded = group.Element
Evaluated = group.Element
)
// FinalizeData encapsulates data needed for Finalize step.
type FinalizeData struct {
inputs [][]byte
blinds []Blind
evalReq *EvaluationRequest
}
// CopyBlinds copies the serialized blinds to use when deterministically
// invoking DeterministicBlind.
func (f FinalizeData) CopyBlinds() []Blind {
out := make([]Blind, len(f.blinds))
for i, b := range f.blinds {
out[i] = b.Copy()
}
return out
}
// EvaluationRequest contains the blinded elements to be evaluated by the Server.
type EvaluationRequest struct {
Elements []Blinded
}
// Evaluation contains a list of elements produced during server's evaluation, and
// for verifiable modes it also includes a proof.
type Evaluation struct {
Elements []Evaluated
Proof *dleq.Proof
}
|