1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
package simot
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/subtle"
"errors"
"io"
"github.com/cloudflare/circl/group"
"golang.org/x/crypto/sha3"
)
const keyLength = 16
// AES GCM encryption, we don't need to pad because our input is fixed length
// Need to use authenticated encryption to defend against tampering on ciphertext
// Input: key, plaintext message
// Output: ciphertext
func aesEncGCM(key, plaintext []byte) []byte {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
nonce := make([]byte, aesgcm.NonceSize())
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
panic(err)
}
ciphertext := aesgcm.Seal(nonce, nonce, plaintext, nil)
return ciphertext
}
// AES GCM decryption
// Input: key, ciphertext message
// Output: plaintext
func aesDecGCM(key, ciphertext []byte) ([]byte, error) {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
nonceSize := aesgcm.NonceSize()
if len(ciphertext) < nonceSize {
return nil, errors.New("ciphertext too short")
}
nonce, encryptedMessage := ciphertext[:nonceSize], ciphertext[nonceSize:]
plaintext, err := aesgcm.Open(nil, nonce, encryptedMessage, nil)
return plaintext, err
}
// Initialization
// Input: myGroup, the group we operate in
// Input: m0, m1 the 2 message of the sender
// Input: index, the index of this SimOT
// Output: A = [a]G, a the sender randomness
func (sender *Sender) InitSender(myGroup group.Group, m0, m1 []byte, index int) group.Element {
sender.a = myGroup.RandomNonZeroScalar(rand.Reader)
sender.k0 = make([]byte, keyLength)
sender.k1 = make([]byte, keyLength)
sender.m0 = m0
sender.m1 = m1
sender.index = index
sender.A = myGroup.NewElement()
sender.A.MulGen(sender.a)
sender.myGroup = myGroup
return sender.A.Copy()
}
// Round 1
// ---- sender should send A to receiver ----
// Input: myGroup, the group we operate in
// Input: choice, the receiver choice bit
// Input: index, the index of this SimOT
// Input: A, from sender
// Output: B = [b]G if c == 0, B = A+[b]G if c == 1 (Implementation in constant time). b, the receiver randomness
func (receiver *Receiver) Round1Receiver(myGroup group.Group, choice int, index int, A group.Element) group.Element {
receiver.b = myGroup.RandomNonZeroScalar(rand.Reader)
receiver.c = choice
receiver.kR = make([]byte, keyLength)
receiver.index = index
receiver.A = A
receiver.myGroup = myGroup
bG := myGroup.NewElement()
bG.MulGen(receiver.b)
AorI := myGroup.NewElement()
AorI.CMov(choice, A)
receiver.B = myGroup.NewElement()
receiver.B.Add(bG, AorI)
return receiver.B.Copy()
}
// Round 2
// ---- receiver should send B to sender ----
// Input: B from the receiver
// Output: e0, e1, encryption of m0 and m1 under key k0, k1
func (sender *Sender) Round2Sender(B group.Element) ([]byte, []byte) {
sender.B = B
aB := sender.myGroup.NewElement()
aB.Mul(sender.B, sender.a)
maA := sender.myGroup.NewElement()
maA.Mul(sender.A, sender.a)
maA.Neg(maA)
aBaA := sender.myGroup.NewElement()
aBaA.Add(aB, maA)
// Hash the whole transcript A|B|...
AByte, errByte := sender.A.MarshalBinary()
if errByte != nil {
panic(errByte)
}
BByte, errByte := sender.B.MarshalBinary()
if errByte != nil {
panic(errByte)
}
aBByte, errByte := aB.MarshalBinary()
if errByte != nil {
panic(errByte)
}
hashByte0 := append(AByte, BByte...)
hashByte0 = append(hashByte0, aBByte...)
s := sha3.NewShake128()
_, errWrite := s.Write(hashByte0)
if errWrite != nil {
panic(errWrite)
}
_, errRead := s.Read(sender.k0)
if errRead != nil {
panic(errRead)
}
aBaAByte, errByte := aBaA.MarshalBinary()
if errByte != nil {
panic(errByte)
}
hashByte1 := append(AByte, BByte...)
hashByte1 = append(hashByte1, aBaAByte...)
s = sha3.NewShake128()
_, errWrite = s.Write(hashByte1)
if errWrite != nil {
panic(errWrite)
}
_, errRead = s.Read(sender.k1)
if errRead != nil {
panic(errRead)
}
e0 := aesEncGCM(sender.k0, sender.m0)
sender.e0 = e0
e1 := aesEncGCM(sender.k1, sender.m1)
sender.e1 = e1
return sender.e0, sender.e1
}
// Round 3
// ---- sender should send e0, e1 to receiver ----
// Input: e0, e1: encryption of m0 and m1 from the sender
// Input: choice, choice bit of receiver
// Choose e0 or e1 based on choice bit in constant time
func (receiver *Receiver) Round3Receiver(e0, e1 []byte, choice int) error {
receiver.ec = make([]byte, len(e1))
// If c == 1, copy e1
subtle.ConstantTimeCopy(choice, receiver.ec, e1)
// If c == 0, copy e0
subtle.ConstantTimeCopy(1-choice, receiver.ec, e0)
AByte, errByte := receiver.A.MarshalBinary()
if errByte != nil {
panic(errByte)
}
BByte, errByte := receiver.B.MarshalBinary()
if errByte != nil {
panic(errByte)
}
bA := receiver.myGroup.NewElement()
bA.Mul(receiver.A, receiver.b)
bAByte, errByte := bA.MarshalBinary()
if errByte != nil {
panic(errByte)
}
// Hash the whole transcript so far
hashByte := append(AByte, BByte...)
hashByte = append(hashByte, bAByte...)
s := sha3.NewShake128()
_, errWrite := s.Write(hashByte)
if errWrite != nil {
panic(errWrite)
}
_, errRead := s.Read(receiver.kR) // kR, decryption key of mc
if errRead != nil {
panic(errRead)
}
mc, errDec := aesDecGCM(receiver.kR, receiver.ec)
if errDec != nil {
return errDec
}
receiver.mc = mc
return nil
}
func (receiver *Receiver) Returnmc() []byte {
return receiver.mc
}
func (sender *Sender) Returne0e1() ([]byte, []byte) {
return sender.e0, sender.e1
}
func (sender *Sender) Returnm0m1() ([]byte, []byte) {
return sender.m0, sender.m1
}
|