1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// Package bls provides BLS signatures using the BLS12-381 pairing curve.
//
// This packages implements the IETF/CFRG draft for BLS signatures [1].
// Currently only the BASIC mode (one of the three modes specified
// in the draft) is supported. The pairing function is instantiated
// with the BLS12-381 curve.
//
// # Groups
//
// The BLS signature scheme can be instantiated with keys in one of the
// two groups: G1 or G2, which correspond to the input domain of a pairing
// function e(G1,G2) -> Gt.
// Thus, choosing keys in G1 implies that signature values are internally
// represented in G2; or viceversa. Use the types KeyG1SigG2 or KeyG2SigG1
// to express this preference.
//
// # Serialization
//
// The serialization of elements in G1 and G2 follows the recommendation
// given in [2], in order to be compatible with other implementations of
// BLS12-381 curve.
//
// # References
//
// [1] https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-05
//
// [2] https://github.com/zkcrypto/bls12_381/blob/0.7.0/src/notes/serialization.rs
package bls
import (
"crypto"
"crypto/sha256"
"encoding/binary"
"errors"
"io"
GG "github.com/cloudflare/circl/ecc/bls12381"
"golang.org/x/crypto/hkdf"
)
var (
ErrInvalid = errors.New("bls: invalid BLS instance")
ErrInvalidKey = errors.New("bls: invalid key")
ErrKeyGen = errors.New("bls: too many unsuccessful key generation tries")
ErrShortIKM = errors.New("bls: IKM material shorter than 32 bytes")
ErrAggregate = errors.New("bls: error while aggregating signatures")
)
const (
dstG1 = "BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_"
dstG2 = "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_"
)
type Signature = []byte
type (
// G1 group used for keys defined in pairing group G1.
G1 struct{ g GG.G1 }
// G2 group used for keys defined in pairing group G2.
G2 struct{ g GG.G2 }
// KeyG1SigG2 sets the keys to G1 and signatures to G2.
KeyG1SigG2 = G1
// KeyG2SigG1 sets the keys to G2 and signatures to G1.
KeyG2SigG1 = G2
)
func (f *G1) setBytes(b []byte) error { return f.g.SetBytes(b) }
func (f *G2) setBytes(b []byte) error { return f.g.SetBytes(b) }
func (f *G1) hash(msg []byte) { f.g.Hash(msg, []byte(dstG1)) }
func (f *G2) hash(msg []byte) { f.g.Hash(msg, []byte(dstG2)) }
// KeyGroup determines the group used for keys, while the other
// group is used for signatures.
type KeyGroup interface{ G1 | G2 }
type PrivateKey[K KeyGroup] struct {
key GG.Scalar
pub *PublicKey[K]
}
type PublicKey[K KeyGroup] struct{ key K }
func (k *PrivateKey[K]) Public() crypto.PublicKey { return k.PublicKey() }
// PublicKey computes the corresponding public key. The key is cached
// for further invocations to this function.
func (k *PrivateKey[K]) PublicKey() *PublicKey[K] {
if k.pub == nil {
k.pub = new(PublicKey[K])
switch any(k).(type) {
case *PrivateKey[G1]:
kk := any(&k.pub.key).(*G1)
kk.g.ScalarMult(&k.key, GG.G1Generator())
case *PrivateKey[G2]:
kk := any(&k.pub.key).(*G2)
kk.g.ScalarMult(&k.key, GG.G2Generator())
default:
panic(ErrInvalid)
}
}
return k.pub
}
func (k *PrivateKey[K]) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(*PrivateKey[K])
if !ok {
return false
}
switch any(k).(type) {
case *PrivateKey[G1], *PrivateKey[G2]:
return k.key.IsEqual(&xx.key) == 1
default:
panic(ErrInvalid)
}
}
// Validate explicitly determines if a private key is valid.
func (k *PrivateKey[K]) Validate() bool {
switch any(k).(type) {
case *PrivateKey[G1], *PrivateKey[G2]:
return k.key.IsZero() == 0
default:
panic(ErrInvalid)
}
}
// MarshalBinary returns a slice with the representation of
// the underlying PrivateKey scalar (in big-endian order).
func (k *PrivateKey[K]) MarshalBinary() ([]byte, error) {
switch any(k).(type) {
case *PrivateKey[G1], *PrivateKey[G2]:
return k.key.MarshalBinary()
default:
panic(ErrInvalid)
}
}
func (k *PrivateKey[K]) UnmarshalBinary(data []byte) error {
switch any(k).(type) {
case *PrivateKey[G1], *PrivateKey[G2]:
if err := k.key.UnmarshalBinary(data); err != nil {
return err
}
if !k.Validate() {
return ErrInvalidKey
}
k.pub = nil
return nil
default:
panic(ErrInvalid)
}
}
// Validate explicitly determines if a public key is valid.
func (k *PublicKey[K]) Validate() bool {
switch any(k).(type) {
case *PublicKey[G1]:
kk := any(k.key).(G1)
return !kk.g.IsIdentity() && kk.g.IsOnG1()
case *PublicKey[G2]:
kk := any(k.key).(G2)
return !kk.g.IsIdentity() && kk.g.IsOnG2()
default:
panic(ErrInvalid)
}
}
func (k *PublicKey[K]) Equal(x crypto.PublicKey) bool {
xx, ok := x.(*PublicKey[K])
if !ok {
return false
}
switch any(k).(type) {
case *PublicKey[G1]:
xxx := any(xx.key).(G1)
kk := any(k.key).(G1)
return kk.g.IsEqual(&xxx.g)
case *PublicKey[G2]:
xxx := any(xx.key).(G2)
kk := any(k.key).(G2)
return kk.g.IsEqual(&xxx.g)
default:
panic(ErrInvalid)
}
}
// MarshalBinary returns a slice with the compressed
// representation of the underlying element in G1 or G2.
func (k *PublicKey[K]) MarshalBinary() ([]byte, error) {
switch any(k).(type) {
case *PublicKey[G1]:
kk := any(k.key).(G1)
return kk.g.BytesCompressed(), nil
case *PublicKey[G2]:
kk := any(k.key).(G2)
return kk.g.BytesCompressed(), nil
default:
panic(ErrInvalid)
}
}
func (k *PublicKey[K]) UnmarshalBinary(data []byte) error {
switch any(k).(type) {
case *PublicKey[G1]:
kk := any(&k.key).(*G1)
return kk.setBytes(data)
case *PublicKey[G2]:
kk := any(&k.key).(*G2)
return kk.setBytes(data)
default:
panic(ErrInvalid)
}
}
// KeyGen derives a private key for the specified group (G1 or G2).
// The length of ikm material should be at least 32 bytes length.
// The salt value should be either empty or a uniformly random
// bytes whose length equals the output length of SHA-256.
func KeyGen[K KeyGroup](ikm, salt, keyInfo []byte) (*PrivateKey[K], error) {
// Implements recommended method at:
// https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-05#name-keygen
if len(ikm) < 32 {
return nil, ErrShortIKM
}
ikmZero := make([]byte, len(ikm)+1)
keyInfoTwo := make([]byte, len(keyInfo)+2)
copy(ikmZero, ikm)
copy(keyInfoTwo, keyInfo)
const L = uint16(48)
binary.BigEndian.PutUint16(keyInfoTwo[len(keyInfo):], L)
OKM := make([]byte, L)
var ss GG.Scalar
for tries := 8; tries > 0; tries-- {
rd := hkdf.New(sha256.New, ikmZero, salt, keyInfoTwo)
n, err := io.ReadFull(rd, OKM)
if n != len(OKM) || err != nil {
return nil, err
}
ss.SetBytes(OKM)
if ss.IsZero() == 1 {
digest := sha256.Sum256(salt)
salt = digest[:]
} else {
return &PrivateKey[K]{key: ss, pub: nil}, nil
}
}
return nil, ErrKeyGen
}
// Sign computes a signature of a message using a key (defined in
// G1 or G1).
func Sign[K KeyGroup](k *PrivateKey[K], msg []byte) Signature {
if !k.Validate() {
panic(ErrInvalidKey)
}
switch any(k).(type) {
case *PrivateKey[G1]:
var Q GG.G2
Q.Hash(msg, []byte(dstG2))
Q.ScalarMult(&k.key, &Q)
return Q.BytesCompressed()
case *PrivateKey[G2]:
var Q GG.G1
Q.Hash(msg, []byte(dstG1))
Q.ScalarMult(&k.key, &Q)
return Q.BytesCompressed()
default:
panic(ErrInvalid)
}
}
// Verify returns true if the signature of a message is valid for the
// corresponding public key.
func Verify[K KeyGroup](pub *PublicKey[K], msg []byte, sig Signature) bool {
var (
a, b interface {
setBytes([]byte) error
hash([]byte)
}
listG1 [2]*GG.G1
listG2 [2]*GG.G2
)
switch any(pub).(type) {
case *PublicKey[G1]:
aa, bb := new(G2), new(G2)
a, b = aa, bb
k := any(pub.key).(G1)
listG1[0], listG1[1] = &k.g, GG.G1Generator()
listG2[0], listG2[1] = &aa.g, &bb.g
case *PublicKey[G2]:
aa, bb := new(G1), new(G1)
a, b = aa, bb
k := any(pub.key).(G2)
listG2[0], listG2[1] = &k.g, GG.G2Generator()
listG1[0], listG1[1] = &aa.g, &bb.g
default:
panic(ErrInvalid)
}
err := b.setBytes(sig)
if err != nil {
return false
}
if !pub.Validate() {
return false
}
a.hash(msg)
res := GG.ProdPairFrac(listG1[:], listG2[:], []int{1, -1})
return res.IsIdentity()
}
// Aggregate produces a unified signature given a list of signatures.
// To specify the group of keys pass either G1{} or G2{} as the first
// parameter.
func Aggregate[K KeyGroup](k K, sigs []Signature) (Signature, error) {
if len(sigs) == 0 {
return nil, ErrAggregate
}
switch any(k).(type) {
case G1:
var P, Q GG.G2
P.SetIdentity()
for _, sig := range sigs {
if err := Q.SetBytes(sig); err != nil {
return nil, err
}
P.Add(&P, &Q)
}
return P.BytesCompressed(), nil
case G2:
var P, Q GG.G1
P.SetIdentity()
for _, sig := range sigs {
if err := Q.SetBytes(sig); err != nil {
return nil, err
}
P.Add(&P, &Q)
}
return P.BytesCompressed(), nil
default:
panic(ErrInvalid)
}
}
// VerifyAggregate returns true if the aggregated signature is valid for
// the list of messages and public keys provided. The slices must have
// equal size and have at least one element.
func VerifyAggregate[K KeyGroup](pubs []*PublicKey[K], msgs [][]byte, aggSig Signature) bool {
if len(pubs) != len(msgs) || len(pubs) == 0 {
return false
}
for _, p := range pubs {
if !p.Validate() {
return false
}
}
n := len(pubs)
listG1 := make([]*GG.G1, n+1)
listG2 := make([]*GG.G2, n+1)
listSigns := make([]int, n+1)
listG1[n] = GG.G1Generator()
listG2[n] = GG.G2Generator()
listSigns[n] = -1
switch any(pubs).(type) {
case []*PublicKey[G1]:
for i := range msgs {
listG2[i] = new(GG.G2)
listG2[i].Hash(msgs[i], []byte(dstG2))
xP := any(pubs[i].key).(G1)
listG1[i] = &xP.g
listSigns[i] = 1
}
err := listG2[n].SetBytes(aggSig)
if err != nil {
return false
}
case []*PublicKey[G2]:
for i := range msgs {
listG1[i] = new(GG.G1)
listG1[i].Hash(msgs[i], []byte(dstG1))
xP := any(pubs[i].key).(G2)
listG2[i] = &xP.g
listSigns[i] = 1
}
err := listG1[n].SetBytes(aggSig)
if err != nil {
return false
}
default:
panic(ErrInvalid)
}
C := GG.ProdPairFrac(listG1, listG2, listSigns)
return C.IsIdentity()
}
|