1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// Code generated from mode3/internal/dilithium.go by gen.go
package internal
import (
cryptoRand "crypto/rand"
"crypto/subtle"
"io"
"github.com/cloudflare/circl/internal/sha3"
common "github.com/cloudflare/circl/sign/internal/dilithium"
)
const (
// Size of a packed polynomial of norm ≤η.
// (Note that the formula is not valid in general.)
PolyLeqEtaSize = (common.N * DoubleEtaBits) / 8
// β = τη, the maximum size of c s₂.
Beta = Tau * Eta
// γ₁ range of y
Gamma1 = 1 << Gamma1Bits
// Size of packed polynomial of norm <γ₁ such as z
PolyLeGamma1Size = (Gamma1Bits + 1) * common.N / 8
// α = 2γ₂ parameter for decompose
Alpha = 2 * Gamma2
// Size of a packed private key
PrivateKeySize = 32 + 32 + TRSize + PolyLeqEtaSize*(L+K) + common.PolyT0Size*K
// Size of a packed public key
PublicKeySize = 32 + common.PolyT1Size*K
// Size of a packed signature
SignatureSize = L*PolyLeGamma1Size + Omega + K + CTildeSize
// Size of packed w₁
PolyW1Size = (common.N * (common.QBits - Gamma1Bits)) / 8
)
// PublicKey is the type of Dilithium public keys.
type PublicKey struct {
rho [32]byte
t1 VecK
// Cached values
t1p [common.PolyT1Size * K]byte
A *Mat
tr *[TRSize]byte
}
// PrivateKey is the type of Dilithium private keys.
type PrivateKey struct {
rho [32]byte
key [32]byte
s1 VecL
s2 VecK
t0 VecK
tr [TRSize]byte
// Cached values
A Mat // ExpandA(ρ)
s1h VecL // NTT(s₁)
s2h VecK // NTT(s₂)
t0h VecK // NTT(t₀)
}
type unpackedSignature struct {
z VecL
hint VecK
c [CTildeSize]byte
}
// Packs the signature into buf.
func (sig *unpackedSignature) Pack(buf []byte) {
copy(buf[:], sig.c[:])
sig.z.PackLeGamma1(buf[CTildeSize:])
sig.hint.PackHint(buf[CTildeSize+L*PolyLeGamma1Size:])
}
// Sets sig to the signature encoded in the buffer.
//
// Returns whether buf contains a properly packed signature.
func (sig *unpackedSignature) Unpack(buf []byte) bool {
if len(buf) < SignatureSize {
return false
}
copy(sig.c[:], buf[:])
sig.z.UnpackLeGamma1(buf[CTildeSize:])
if sig.z.Exceeds(Gamma1 - Beta) {
return false
}
if !sig.hint.UnpackHint(buf[CTildeSize+L*PolyLeGamma1Size:]) {
return false
}
return true
}
// Packs the public key into buf.
func (pk *PublicKey) Pack(buf *[PublicKeySize]byte) {
copy(buf[:32], pk.rho[:])
copy(buf[32:], pk.t1p[:])
}
// Sets pk to the public key encoded in buf.
func (pk *PublicKey) Unpack(buf *[PublicKeySize]byte) {
copy(pk.rho[:], buf[:32])
copy(pk.t1p[:], buf[32:])
pk.t1.UnpackT1(pk.t1p[:])
pk.A = new(Mat)
pk.A.Derive(&pk.rho)
// tr = CRH(ρ ‖ t1) = CRH(pk)
pk.tr = new([TRSize]byte)
h := sha3.NewShake256()
_, _ = h.Write(buf[:])
_, _ = h.Read(pk.tr[:])
}
// Packs the private key into buf.
func (sk *PrivateKey) Pack(buf *[PrivateKeySize]byte) {
copy(buf[:32], sk.rho[:])
copy(buf[32:64], sk.key[:])
copy(buf[64:64+TRSize], sk.tr[:])
offset := 64 + TRSize
sk.s1.PackLeqEta(buf[offset:])
offset += PolyLeqEtaSize * L
sk.s2.PackLeqEta(buf[offset:])
offset += PolyLeqEtaSize * K
sk.t0.PackT0(buf[offset:])
}
// Sets sk to the private key encoded in buf.
func (sk *PrivateKey) Unpack(buf *[PrivateKeySize]byte) {
copy(sk.rho[:], buf[:32])
copy(sk.key[:], buf[32:64])
copy(sk.tr[:], buf[64:64+TRSize])
offset := 64 + TRSize
sk.s1.UnpackLeqEta(buf[offset:])
offset += PolyLeqEtaSize * L
sk.s2.UnpackLeqEta(buf[offset:])
offset += PolyLeqEtaSize * K
sk.t0.UnpackT0(buf[offset:])
// Cached values
sk.A.Derive(&sk.rho)
sk.t0h = sk.t0
sk.t0h.NTT()
sk.s1h = sk.s1
sk.s1h.NTT()
sk.s2h = sk.s2
sk.s2h.NTT()
}
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (*PublicKey, *PrivateKey, error) {
var seed [32]byte
if rand == nil {
rand = cryptoRand.Reader
}
_, err := io.ReadFull(rand, seed[:])
if err != nil {
return nil, nil, err
}
pk, sk := NewKeyFromSeed(&seed)
return pk, sk, nil
}
// NewKeyFromSeed derives a public/private key pair using the given seed.
func NewKeyFromSeed(seed *[common.SeedSize]byte) (*PublicKey, *PrivateKey) {
var eSeed [128]byte // expanded seed
var pk PublicKey
var sk PrivateKey
var sSeed [64]byte
h := sha3.NewShake256()
_, _ = h.Write(seed[:])
if NIST {
_, _ = h.Write([]byte{byte(K), byte(L)})
}
_, _ = h.Read(eSeed[:])
copy(pk.rho[:], eSeed[:32])
copy(sSeed[:], eSeed[32:96])
copy(sk.key[:], eSeed[96:])
copy(sk.rho[:], pk.rho[:])
sk.A.Derive(&pk.rho)
for i := uint16(0); i < L; i++ {
PolyDeriveUniformLeqEta(&sk.s1[i], &sSeed, i)
}
for i := uint16(0); i < K; i++ {
PolyDeriveUniformLeqEta(&sk.s2[i], &sSeed, i+L)
}
sk.s1h = sk.s1
sk.s1h.NTT()
sk.s2h = sk.s2
sk.s2h.NTT()
sk.computeT0andT1(&sk.t0, &pk.t1)
sk.t0h = sk.t0
sk.t0h.NTT()
// Complete public key far enough to be packed
pk.t1.PackT1(pk.t1p[:])
pk.A = &sk.A
// Finish private key
var packedPk [PublicKeySize]byte
pk.Pack(&packedPk)
// tr = CRH(ρ ‖ t1) = CRH(pk)
h.Reset()
_, _ = h.Write(packedPk[:])
_, _ = h.Read(sk.tr[:])
// Finish cache of public key
pk.tr = &sk.tr
return &pk, &sk
}
// Computes t0 and t1 from sk.s1h, sk.s2 and sk.A.
func (sk *PrivateKey) computeT0andT1(t0, t1 *VecK) {
var t VecK
// Set t to A s₁ + s₂
for i := 0; i < K; i++ {
PolyDotHat(&t[i], &sk.A[i], &sk.s1h)
t[i].ReduceLe2Q()
t[i].InvNTT()
}
t.Add(&t, &sk.s2)
t.Normalize()
// Compute t₀, t₁ = Power2Round(t)
t.Power2Round(t0, t1)
}
// Verify checks whether the given signature by pk on msg is valid.
//
// For Dilithium this is the top-level verification function.
// In ML-DSA, this is ML-DSA.Verify_internal.
func Verify(pk *PublicKey, msg func(io.Writer), signature []byte) bool {
var sig unpackedSignature
var mu [64]byte
var zh VecL
var Az, Az2dct1, w1 VecK
var ch common.Poly
var cp [CTildeSize]byte
var w1Packed [PolyW1Size * K]byte
// Note that Unpack() checked whether ‖z‖_∞ < γ₁ - β
// and ensured that there at most ω ones in pk.hint.
if !sig.Unpack(signature) {
return false
}
// μ = CRH(tr ‖ msg)
h := sha3.NewShake256()
_, _ = h.Write(pk.tr[:])
msg(&h)
_, _ = h.Read(mu[:])
// Compute Az
zh = sig.z
zh.NTT()
for i := 0; i < K; i++ {
PolyDotHat(&Az[i], &pk.A[i], &zh)
}
// Next, we compute Az - 2ᵈ·c·t₁.
// Note that the coefficients of t₁ are bounded by 256 = 2⁹,
// so the coefficients of Az2dct1 will bounded by 2⁹⁺ᵈ = 2²³ < 2q,
// which is small enough for NTT().
Az2dct1.MulBy2toD(&pk.t1)
Az2dct1.NTT()
PolyDeriveUniformBall(&ch, sig.c[:])
ch.NTT()
for i := 0; i < K; i++ {
Az2dct1[i].MulHat(&Az2dct1[i], &ch)
}
Az2dct1.Sub(&Az, &Az2dct1)
Az2dct1.ReduceLe2Q()
Az2dct1.InvNTT()
Az2dct1.NormalizeAssumingLe2Q()
// UseHint(pk.hint, Az - 2ᵈ·c·t₁)
// = UseHint(pk.hint, w - c·s₂ + c·t₀)
// = UseHint(pk.hint, r + c·t₀)
// = r₁ = w₁.
w1.UseHint(&Az2dct1, &sig.hint)
w1.PackW1(w1Packed[:])
// c' = H(μ, w₁)
h.Reset()
_, _ = h.Write(mu[:])
_, _ = h.Write(w1Packed[:])
_, _ = h.Read(cp[:])
return sig.c == cp
}
// SignTo signs the given message and writes the signature into signature.
//
// For Dilithium this is the top-level signing function. For ML-DSA
// this is ML-DSA.Sign_internal.
//
//nolint:funlen
func SignTo(sk *PrivateKey, msg func(io.Writer), rnd [32]byte, signature []byte) {
var mu, rhop [64]byte
var w1Packed [PolyW1Size * K]byte
var y, yh VecL
var w, w0, w1, w0mcs2, ct0, w0mcs2pct0 VecK
var ch common.Poly
var yNonce uint16
var sig unpackedSignature
if len(signature) < SignatureSize {
panic("Signature does not fit in that byteslice")
}
// μ = CRH(tr ‖ msg)
h := sha3.NewShake256()
_, _ = h.Write(sk.tr[:])
msg(&h)
_, _ = h.Read(mu[:])
// ρ' = CRH(key ‖ μ)
h.Reset()
_, _ = h.Write(sk.key[:])
if NIST {
_, _ = h.Write(rnd[:])
}
_, _ = h.Write(mu[:])
_, _ = h.Read(rhop[:])
// Main rejection loop
attempt := 0
for {
attempt++
if attempt >= 576 {
// Depending on the mode, one try has a chance between 1/7 and 1/4
// of succeeding. Thus it is safe to say that 576 iterations
// are enough as (6/7)⁵⁷⁶ < 2⁻¹²⁸.
panic("This should only happen 1 in 2^{128}: something is wrong.")
}
// y = ExpandMask(ρ', key)
VecLDeriveUniformLeGamma1(&y, &rhop, yNonce)
yNonce += uint16(L)
// Set w to A y
yh = y
yh.NTT()
for i := 0; i < K; i++ {
PolyDotHat(&w[i], &sk.A[i], &yh)
w[i].ReduceLe2Q()
w[i].InvNTT()
}
// Decompose w into w₀ and w₁
w.NormalizeAssumingLe2Q()
w.Decompose(&w0, &w1)
// c~ = H(μ ‖ w₁)
w1.PackW1(w1Packed[:])
h.Reset()
_, _ = h.Write(mu[:])
_, _ = h.Write(w1Packed[:])
_, _ = h.Read(sig.c[:])
PolyDeriveUniformBall(&ch, sig.c[:])
ch.NTT()
// Ensure ‖ w₀ - c·s2 ‖_∞ < γ₂ - β.
//
// By Lemma 3 of the specification this is equivalent to checking that
// both ‖ r₀ ‖_∞ < γ₂ - β and r₁ = w₁, for the decomposition
// w - c·s₂ = r₁ α + r₀ as computed by decompose().
// See also §4.1 of the specification.
for i := 0; i < K; i++ {
w0mcs2[i].MulHat(&ch, &sk.s2h[i])
w0mcs2[i].InvNTT()
}
w0mcs2.Sub(&w0, &w0mcs2)
w0mcs2.Normalize()
if w0mcs2.Exceeds(Gamma2 - Beta) {
continue
}
// z = y + c·s₁
for i := 0; i < L; i++ {
sig.z[i].MulHat(&ch, &sk.s1h[i])
sig.z[i].InvNTT()
}
sig.z.Add(&sig.z, &y)
sig.z.Normalize()
// Ensure ‖z‖_∞ < γ₁ - β
if sig.z.Exceeds(Gamma1 - Beta) {
continue
}
// Compute c·t₀
for i := 0; i < K; i++ {
ct0[i].MulHat(&ch, &sk.t0h[i])
ct0[i].InvNTT()
}
ct0.NormalizeAssumingLe2Q()
// Ensure ‖c·t₀‖_∞ < γ₂.
if ct0.Exceeds(Gamma2) {
continue
}
// Create the hint to be able to reconstruct w₁ from w - c·s₂ + c·t0.
// Note that we're not using makeHint() in the obvious way as we
// do not know whether ‖ sc·s₂ - c·t₀ ‖_∞ < γ₂. Instead we note
// that our makeHint() is actually the same as a makeHint for a
// different decomposition:
//
// Earlier we ensured indirectly with a check that r₁ = w₁ where
// r = w - c·s₂. Hence r₀ = r - r₁ α = w - c·s₂ - w₁ α = w₀ - c·s₂.
// Thus MakeHint(w₀ - c·s₂ + c·t₀, w₁) = MakeHint(r0 + c·t₀, r₁)
// and UseHint(w - c·s₂ + c·t₀, w₁) = UseHint(r + c·t₀, r₁).
// As we just ensured that ‖ c·t₀ ‖_∞ < γ₂ our usage is correct.
w0mcs2pct0.Add(&w0mcs2, &ct0)
w0mcs2pct0.NormalizeAssumingLe2Q()
hintPop := sig.hint.MakeHint(&w0mcs2pct0, &w1)
if hintPop > Omega {
continue
}
break
}
sig.Pack(signature[:])
}
// Computes the public key corresponding to this private key.
func (sk *PrivateKey) Public() *PublicKey {
var t0 VecK
pk := &PublicKey{
rho: sk.rho,
A: &sk.A,
tr: &sk.tr,
}
sk.computeT0andT1(&t0, &pk.t1)
pk.t1.PackT1(pk.t1p[:])
return pk
}
// Equal returns whether the two public keys are equal
func (pk *PublicKey) Equal(other *PublicKey) bool {
return pk.rho == other.rho && pk.t1 == other.t1
}
// Equal returns whether the two private keys are equal
func (sk *PrivateKey) Equal(other *PrivateKey) bool {
ret := (subtle.ConstantTimeCompare(sk.rho[:], other.rho[:]) &
subtle.ConstantTimeCompare(sk.key[:], other.key[:]) &
subtle.ConstantTimeCompare(sk.tr[:], other.tr[:]))
acc := uint32(0)
for i := 0; i < L; i++ {
for j := 0; j < common.N; j++ {
acc |= sk.s1[i][j] ^ other.s1[i][j]
}
}
for i := 0; i < K; i++ {
for j := 0; j < common.N; j++ {
acc |= sk.s2[i][j] ^ other.s2[i][j]
acc |= sk.t0[i][j] ^ other.t0[i][j]
}
}
return (ret & subtle.ConstantTimeEq(int32(acc), 0)) == 1
}
|