1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// Code generated from mode3/internal/pack.go by gen.go
package internal
import (
common "github.com/cloudflare/circl/sign/internal/dilithium"
)
// Writes p with norm less than or equal η into buf, which must be of
// size PolyLeqEtaSize.
//
// Assumes coefficients of p are not normalized, but in [q-η,q+η].
func PolyPackLeqEta(p *common.Poly, buf []byte) {
if DoubleEtaBits == 4 { // compiler eliminates branch
j := 0
for i := 0; i < PolyLeqEtaSize; i++ {
buf[i] = (byte(common.Q+Eta-p[j]) |
byte(common.Q+Eta-p[j+1])<<4)
j += 2
}
} else if DoubleEtaBits == 3 {
j := 0
for i := 0; i < PolyLeqEtaSize; i += 3 {
buf[i] = (byte(common.Q+Eta-p[j]) |
(byte(common.Q+Eta-p[j+1]) << 3) |
(byte(common.Q+Eta-p[j+2]) << 6))
buf[i+1] = ((byte(common.Q+Eta-p[j+2]) >> 2) |
(byte(common.Q+Eta-p[j+3]) << 1) |
(byte(common.Q+Eta-p[j+4]) << 4) |
(byte(common.Q+Eta-p[j+5]) << 7))
buf[i+2] = ((byte(common.Q+Eta-p[j+5]) >> 1) |
(byte(common.Q+Eta-p[j+6]) << 2) |
(byte(common.Q+Eta-p[j+7]) << 5))
j += 8
}
} else {
panic("eta not supported")
}
}
// Sets p to the polynomial of norm less than or equal η encoded in the
// given buffer of size PolyLeqEtaSize.
//
// Output coefficients of p are not normalized, but in [q-η,q+η] provided
// buf was created using PackLeqEta.
//
// Beware, for arbitrary buf the coefficients of p might end up in
// the interval [q-2^b,q+2^b] where b is the least b with η≤2^b.
func PolyUnpackLeqEta(p *common.Poly, buf []byte) {
if DoubleEtaBits == 4 { // compiler eliminates branch
j := 0
for i := 0; i < PolyLeqEtaSize; i++ {
p[j] = common.Q + Eta - uint32(buf[i]&15)
p[j+1] = common.Q + Eta - uint32(buf[i]>>4)
j += 2
}
} else if DoubleEtaBits == 3 {
j := 0
for i := 0; i < PolyLeqEtaSize; i += 3 {
p[j] = common.Q + Eta - uint32(buf[i]&7)
p[j+1] = common.Q + Eta - uint32((buf[i]>>3)&7)
p[j+2] = common.Q + Eta - uint32((buf[i]>>6)|((buf[i+1]<<2)&7))
p[j+3] = common.Q + Eta - uint32((buf[i+1]>>1)&7)
p[j+4] = common.Q + Eta - uint32((buf[i+1]>>4)&7)
p[j+5] = common.Q + Eta - uint32((buf[i+1]>>7)|((buf[i+2]<<1)&7))
p[j+6] = common.Q + Eta - uint32((buf[i+2]>>2)&7)
p[j+7] = common.Q + Eta - uint32((buf[i+2]>>5)&7)
j += 8
}
} else {
panic("eta not supported")
}
}
// Writes v with coefficients in {0, 1} of which at most ω non-zero
// to buf, which must have length ω+k.
func (v *VecK) PackHint(buf []byte) {
// The packed hint starts with the indices of the non-zero coefficients
// For instance:
//
// (x⁵⁶ + x¹⁰⁰, x²⁵⁵, 0, x² + x²³, x¹)
//
// Yields
//
// 56, 100, 255, 2, 23, 1
//
// Then we pad with zeroes until we have a list of ω items:
// // 56, 100, 255, 2, 23, 1, 0, 0, ..., 0
//
// Then we finish with a list of the switch-over-indices in this
// list between polynomials, so:
//
// 56, 100, 255, 2, 23, 1, 0, 0, ..., 0, 2, 3, 3, 5, 6
off := uint8(0)
for i := 0; i < K; i++ {
for j := uint16(0); j < common.N; j++ {
if v[i][j] != 0 {
buf[off] = uint8(j)
off++
}
}
buf[Omega+i] = off
}
for ; off < Omega; off++ {
buf[off] = 0
}
}
// Sets v to the vector encoded using VecK.PackHint()
//
// Returns whether unpacking was successful.
func (v *VecK) UnpackHint(buf []byte) bool {
// A priori, there would be several reasonable ways to encode the same
// hint vector. We take care to only allow only one encoding, to ensure
// "strong unforgeability".
//
// See PackHint() source for description of the encoding.
*v = VecK{} // zero v
prevSOP := uint8(0) // previous switch-over-point
for i := 0; i < K; i++ {
SOP := buf[Omega+i]
if SOP < prevSOP || SOP > Omega {
return false // ensures switch-over-points are increasing
}
for j := prevSOP; j < SOP; j++ {
if j > prevSOP && buf[j] <= buf[j-1] {
return false // ensures indices are increasing (within a poly)
}
v[i][buf[j]] = 1
}
prevSOP = SOP
}
for j := prevSOP; j < Omega; j++ {
if buf[j] != 0 {
return false // ensures padding indices are zero
}
}
return true
}
// Sets p to the polynomial packed into buf by PolyPackLeGamma1.
//
// p will be normalized.
func PolyUnpackLeGamma1(p *common.Poly, buf []byte) {
if Gamma1Bits == 17 {
j := 0
for i := 0; i < PolyLeGamma1Size; i += 9 {
p0 := uint32(buf[i]) | (uint32(buf[i+1]) << 8) |
(uint32(buf[i+2]&0x3) << 16)
p1 := uint32(buf[i+2]>>2) | (uint32(buf[i+3]) << 6) |
(uint32(buf[i+4]&0xf) << 14)
p2 := uint32(buf[i+4]>>4) | (uint32(buf[i+5]) << 4) |
(uint32(buf[i+6]&0x3f) << 12)
p3 := uint32(buf[i+6]>>6) | (uint32(buf[i+7]) << 2) |
(uint32(buf[i+8]) << 10)
// coefficients in [0,…,2γ₁)
p0 = Gamma1 - p0 // (-γ₁,…,γ₁]
p1 = Gamma1 - p1
p2 = Gamma1 - p2
p3 = Gamma1 - p3
p0 += uint32(int32(p0)>>31) & common.Q // normalize
p1 += uint32(int32(p1)>>31) & common.Q
p2 += uint32(int32(p2)>>31) & common.Q
p3 += uint32(int32(p3)>>31) & common.Q
p[j] = p0
p[j+1] = p1
p[j+2] = p2
p[j+3] = p3
j += 4
}
} else if Gamma1Bits == 19 {
j := 0
for i := 0; i < PolyLeGamma1Size; i += 5 {
p0 := uint32(buf[i]) | (uint32(buf[i+1]) << 8) |
(uint32(buf[i+2]&0xf) << 16)
p1 := uint32(buf[i+2]>>4) | (uint32(buf[i+3]) << 4) |
(uint32(buf[i+4]) << 12)
p0 = Gamma1 - p0
p1 = Gamma1 - p1
p0 += uint32(int32(p0)>>31) & common.Q
p1 += uint32(int32(p1)>>31) & common.Q
p[j] = p0
p[j+1] = p1
j += 2
}
} else {
panic("γ₁ not supported")
}
}
// Writes p whose coefficients are in (-γ₁,γ₁] into buf
// which has to be of length PolyLeGamma1Size.
//
// Assumes p is normalized.
func PolyPackLeGamma1(p *common.Poly, buf []byte) {
if Gamma1Bits == 17 {
j := 0
// coefficients in [0,…,γ₁] ∪ (q-γ₁,…,q)
for i := 0; i < PolyLeGamma1Size; i += 9 {
p0 := Gamma1 - p[j] // [0,…,γ₁] ∪ (γ₁-q,…,2γ₁-q)
p0 += uint32(int32(p0)>>31) & common.Q // [0,…,2γ₁)
p1 := Gamma1 - p[j+1]
p1 += uint32(int32(p1)>>31) & common.Q
p2 := Gamma1 - p[j+2]
p2 += uint32(int32(p2)>>31) & common.Q
p3 := Gamma1 - p[j+3]
p3 += uint32(int32(p3)>>31) & common.Q
buf[i+0] = byte(p0)
buf[i+1] = byte(p0 >> 8)
buf[i+2] = byte(p0>>16) | byte(p1<<2)
buf[i+3] = byte(p1 >> 6)
buf[i+4] = byte(p1>>14) | byte(p2<<4)
buf[i+5] = byte(p2 >> 4)
buf[i+6] = byte(p2>>12) | byte(p3<<6)
buf[i+7] = byte(p3 >> 2)
buf[i+8] = byte(p3 >> 10)
j += 4
}
} else if Gamma1Bits == 19 {
j := 0
for i := 0; i < PolyLeGamma1Size; i += 5 {
// Coefficients are in [0, γ₁] ∪ (Q-γ₁, Q)
p0 := Gamma1 - p[j]
p0 += uint32(int32(p0)>>31) & common.Q
p1 := Gamma1 - p[j+1]
p1 += uint32(int32(p1)>>31) & common.Q
buf[i+0] = byte(p0)
buf[i+1] = byte(p0 >> 8)
buf[i+2] = byte(p0>>16) | byte(p1<<4)
buf[i+3] = byte(p1 >> 4)
buf[i+4] = byte(p1 >> 12)
j += 2
}
} else {
panic("γ₁ not supported")
}
}
// Pack w₁ into buf, which must be of length PolyW1Size.
//
// Assumes w₁ is normalized.
func PolyPackW1(p *common.Poly, buf []byte) {
if Gamma1Bits == 19 {
p.PackLe16(buf)
} else if Gamma1Bits == 17 {
j := 0
for i := 0; i < PolyW1Size; i += 3 {
buf[i] = byte(p[j]) | byte(p[j+1]<<6)
buf[i+1] = byte(p[j+1]>>2) | byte(p[j+2]<<4)
buf[i+2] = byte(p[j+2]>>4) | byte(p[j+3]<<2)
j += 4
}
} else {
panic("unsupported γ₁")
}
}
|