1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
// Code generated from mode3/internal/sample.go by gen.go
package internal
import (
"encoding/binary"
"github.com/cloudflare/circl/internal/sha3"
common "github.com/cloudflare/circl/sign/internal/dilithium"
"github.com/cloudflare/circl/simd/keccakf1600"
)
// DeriveX4Available indicates whether the system supports the quick fourway
// sampling variants like PolyDeriveUniformX4.
var DeriveX4Available = keccakf1600.IsEnabledX4()
// For each i, sample ps[i] uniformly from the given seed and nonces[i].
// ps[i] may be nil and is ignored in that case.
//
// Can only be called when DeriveX4Available is true.
func PolyDeriveUniformX4(ps [4]*common.Poly, seed *[32]byte, nonces [4]uint16) {
var perm keccakf1600.StateX4
state := perm.Initialize(false)
// Absorb the seed in the four states
for i := 0; i < 4; i++ {
v := binary.LittleEndian.Uint64(seed[8*i : 8*(i+1)])
for j := 0; j < 4; j++ {
state[i*4+j] = v
}
}
// Absorb the nonces, the SHAKE128 domain separator (0b1111), the
// start of the padding (0b...001) and the end of the padding 0b100...
// Recall that the rate of SHAKE128 is 168 --- i.e. 21 uint64s.
for j := 0; j < 4; j++ {
state[4*4+j] = uint64(nonces[j]) | (0x1f << 16)
state[20*4+j] = 0x80 << 56
}
var idx [4]int // indices into ps
for j := 0; j < 4; j++ {
if ps[j] == nil {
idx[j] = common.N // mark nil polynomial as completed
}
}
done := false
for !done {
// Applies KeccaK-f[1600] to state to get the next 21 uint64s of each
// of the four SHAKE128 streams.
perm.Permute()
done = true
PolyLoop:
for j := 0; j < 4; j++ {
if idx[j] == common.N {
continue
}
for i := 0; i < 7; i++ {
var t [8]uint32
t[0] = uint32(state[i*3*4+j] & 0x7fffff)
t[1] = uint32((state[i*3*4+j] >> 24) & 0x7fffff)
t[2] = uint32((state[i*3*4+j] >> 48) |
((state[(i*3+1)*4+j] & 0x7f) << 16))
t[3] = uint32((state[(i*3+1)*4+j] >> 8) & 0x7fffff)
t[4] = uint32((state[(i*3+1)*4+j] >> 32) & 0x7fffff)
t[5] = uint32((state[(i*3+1)*4+j] >> 56) |
((state[(i*3+2)*4+j] & 0x7fff) << 8))
t[6] = uint32((state[(i*3+2)*4+j] >> 16) & 0x7fffff)
t[7] = uint32((state[(i*3+2)*4+j] >> 40) & 0x7fffff)
for k := 0; k < 8; k++ {
if t[k] < common.Q {
ps[j][idx[j]] = t[k]
idx[j]++
if idx[j] == common.N {
continue PolyLoop
}
}
}
}
done = false
}
}
}
// Sample p uniformly from the given seed and nonce.
//
// p will be normalized.
func PolyDeriveUniform(p *common.Poly, seed *[32]byte, nonce uint16) {
var i, length int
var buf [12 * 16]byte // fits 168B SHAKE-128 rate
length = 168
sample := func() {
// Note that 3 divides into 168 and 12*16, so we use up buf completely.
for j := 0; j < length && i < common.N; j += 3 {
t := (uint32(buf[j]) | (uint32(buf[j+1]) << 8) |
(uint32(buf[j+2]) << 16)) & 0x7fffff
// We use rejection sampling
if t < common.Q {
p[i] = t
i++
}
}
}
var iv [32 + 2]byte // 32 byte seed + uint16 nonce
h := sha3.NewShake128()
copy(iv[:32], seed[:])
iv[32] = uint8(nonce)
iv[33] = uint8(nonce >> 8)
_, _ = h.Write(iv[:])
for i < common.N {
_, _ = h.Read(buf[:168])
sample()
}
}
// Sample p uniformly with coefficients of norm less than or equal η,
// using the given seed and nonce.
//
// p will not be normalized, but will have coefficients in [q-η,q+η].
func PolyDeriveUniformLeqEta(p *common.Poly, seed *[64]byte, nonce uint16) {
// Assumes 2 < η < 8.
var i, length int
var buf [9 * 16]byte // fits 136B SHAKE-256 rate
length = 136
sample := func() {
// We use rejection sampling
for j := 0; j < length && i < common.N; j++ {
t1 := uint32(buf[j]) & 15
t2 := uint32(buf[j]) >> 4
if Eta == 2 { // branch is eliminated by compiler
if t1 <= 14 {
t1 -= ((205 * t1) >> 10) * 5 // reduce mod 5
p[i] = common.Q + Eta - t1
i++
}
if t2 <= 14 && i < common.N {
t2 -= ((205 * t2) >> 10) * 5 // reduce mod 5
p[i] = common.Q + Eta - t2
i++
}
} else if Eta == 4 {
if t1 <= 2*Eta {
p[i] = common.Q + Eta - t1
i++
}
if t2 <= 2*Eta && i < common.N {
p[i] = common.Q + Eta - t2
i++
}
} else {
panic("unsupported η")
}
}
}
var iv [64 + 2]byte // 64 byte seed + uint16 nonce
h := sha3.NewShake256()
copy(iv[:64], seed[:])
iv[64] = uint8(nonce)
iv[65] = uint8(nonce >> 8)
// 136 is SHAKE-256 rate
_, _ = h.Write(iv[:])
for i < common.N {
_, _ = h.Read(buf[:136])
sample()
}
}
// Sample v[i] uniformly with coefficients in (-γ₁,…,γ₁] using the
// given seed and nonce+i
//
// p will be normalized.
func VecLDeriveUniformLeGamma1(v *VecL, seed *[64]byte, nonce uint16) {
for i := 0; i < L; i++ {
PolyDeriveUniformLeGamma1(&v[i], seed, nonce+uint16(i))
}
}
// Sample p uniformly with coefficients in (-γ₁,…,γK1s] using the
// given seed and nonce.
//
// p will be normalized.
func PolyDeriveUniformLeGamma1(p *common.Poly, seed *[64]byte, nonce uint16) {
var buf [PolyLeGamma1Size]byte
var iv [66]byte
h := sha3.NewShake256()
copy(iv[:64], seed[:])
iv[64] = uint8(nonce)
iv[65] = uint8(nonce >> 8)
_, _ = h.Write(iv[:])
_, _ = h.Read(buf[:])
PolyUnpackLeGamma1(p, buf[:])
}
// For each i, sample ps[i] uniformly with τ non-zero coefficients in {q-1,1}
// using the given seed and w1[i]. ps[i] may be nil and is ignored
// in that case. ps[i] will be normalized.
//
// Can only be called when DeriveX4Available is true.
//
// This function is currently not used (yet).
func PolyDeriveUniformBallX4(ps [4]*common.Poly, seed []byte) {
var perm keccakf1600.StateX4
state := perm.Initialize(false)
// Absorb the seed in the four states
for i := 0; i < CTildeSize/8; i++ {
v := binary.LittleEndian.Uint64(seed[8*i : 8*(i+1)])
for j := 0; j < 4; j++ {
state[i*4+j] = v
}
}
// SHAKE256 domain separator and padding
for j := 0; j < 4; j++ {
state[(CTildeSize/8)*4+j] ^= 0x1f
state[16*4+j] ^= 0x80 << 56
}
perm.Permute()
var signs [4]uint64
var idx [4]uint16 // indices into ps
for j := 0; j < 4; j++ {
if ps[j] != nil {
signs[j] = state[j]
*ps[j] = common.Poly{} // zero ps[j]
idx[j] = common.N - Tau
} else {
idx[j] = common.N // mark as completed
}
}
stateOffset := 1
for {
done := true
PolyLoop:
for j := 0; j < 4; j++ {
if idx[j] == common.N {
continue
}
for i := stateOffset; i < 17; i++ {
var bs [8]byte
binary.LittleEndian.PutUint64(bs[:], state[4*i+j])
for k := 0; k < 8; k++ {
b := uint16(bs[k])
if b > idx[j] {
continue
}
ps[j][idx[j]] = ps[j][b]
ps[j][b] = 1
// Takes least significant bit of signs and uses it for the sign.
// Note 1 ^ (1 | (Q-1)) = Q-1.
ps[j][b] ^= uint32((-(signs[j] & 1)) & (1 | (common.Q - 1)))
signs[j] >>= 1
idx[j]++
if idx[j] == common.N {
continue PolyLoop
}
}
}
done = false
}
if done {
break
}
perm.Permute()
stateOffset = 0
}
}
// Samples p uniformly with τ non-zero coefficients in {q-1,1}.
//
// The polynomial p will be normalized.
func PolyDeriveUniformBall(p *common.Poly, seed []byte) {
var buf [136]byte // SHAKE-256 rate is 136
h := sha3.NewShake256()
_, _ = h.Write(seed[:])
_, _ = h.Read(buf[:])
// Essentially we generate a sequence of τ ones or minus ones,
// prepend 196 zeroes and shuffle the concatenation using the
// usual algorithm (Fisher--Yates.)
signs := binary.LittleEndian.Uint64(buf[:])
bufOff := 8 // offset into buf
*p = common.Poly{} // zero p
for i := uint16(common.N - Tau); i < common.N; i++ {
var b uint16
// Find location of where to move the new coefficient to using
// rejection sampling.
for {
if bufOff >= 136 {
_, _ = h.Read(buf[:])
bufOff = 0
}
b = uint16(buf[bufOff])
bufOff++
if b <= i {
break
}
}
p[i] = p[b]
p[b] = 1
// Takes least significant bit of signs and uses it for the sign.
// Note 1 ^ (1 | (Q-1)) = Q-1.
p[b] ^= uint32((-(signs & 1)) & (1 | (common.Q - 1)))
signs >>= 1
}
}
|