1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// Code generated from mode3/internal/vec.go by gen.go
package internal
import (
common "github.com/cloudflare/circl/sign/internal/dilithium"
)
// A vector of L polynomials.
type VecL [L]common.Poly
// A vector of K polynomials.
type VecK [K]common.Poly
// Normalize the polynomials in this vector.
func (v *VecL) Normalize() {
for i := 0; i < L; i++ {
v[i].Normalize()
}
}
// Normalize the polynomials in this vector assuming their coefficients
// are already bounded by 2q.
func (v *VecL) NormalizeAssumingLe2Q() {
for i := 0; i < L; i++ {
v[i].NormalizeAssumingLe2Q()
}
}
// Sets v to w + u. Does not normalize.
func (v *VecL) Add(w, u *VecL) {
for i := 0; i < L; i++ {
v[i].Add(&w[i], &u[i])
}
}
// Applies NTT componentwise. See Poly.NTT() for details.
func (v *VecL) NTT() {
for i := 0; i < L; i++ {
v[i].NTT()
}
}
// Checks whether any of the coefficients exceeds the given bound in supnorm
//
// Requires the vector to be normalized.
func (v *VecL) Exceeds(bound uint32) bool {
for i := 0; i < L; i++ {
if v[i].Exceeds(bound) {
return true
}
}
return false
}
// Applies Poly.Power2Round componentwise.
//
// Requires the vector to be normalized.
func (v *VecL) Power2Round(v0PlusQ, v1 *VecL) {
for i := 0; i < L; i++ {
v[i].Power2Round(&v0PlusQ[i], &v1[i])
}
}
// Applies Poly.Decompose componentwise.
//
// Requires the vector to be normalized.
func (v *VecL) Decompose(v0PlusQ, v1 *VecL) {
for i := 0; i < L; i++ {
PolyDecompose(&v[i], &v0PlusQ[i], &v1[i])
}
}
// Sequentially packs each polynomial using Poly.PackLeqEta().
func (v *VecL) PackLeqEta(buf []byte) {
offset := 0
for i := 0; i < L; i++ {
PolyPackLeqEta(&v[i], buf[offset:])
offset += PolyLeqEtaSize
}
}
// Sets v to the polynomials packed in buf using VecL.PackLeqEta().
func (v *VecL) UnpackLeqEta(buf []byte) {
offset := 0
for i := 0; i < L; i++ {
PolyUnpackLeqEta(&v[i], buf[offset:])
offset += PolyLeqEtaSize
}
}
// Sequentially packs each polynomial using PolyPackLeGamma1().
func (v *VecL) PackLeGamma1(buf []byte) {
offset := 0
for i := 0; i < L; i++ {
PolyPackLeGamma1(&v[i], buf[offset:])
offset += PolyLeGamma1Size
}
}
// Sets v to the polynomials packed in buf using VecL.PackLeGamma1().
func (v *VecL) UnpackLeGamma1(buf []byte) {
offset := 0
for i := 0; i < L; i++ {
PolyUnpackLeGamma1(&v[i], buf[offset:])
offset += PolyLeGamma1Size
}
}
// Normalize the polynomials in this vector.
func (v *VecK) Normalize() {
for i := 0; i < K; i++ {
v[i].Normalize()
}
}
// Normalize the polynomials in this vector assuming their coefficients
// are already bounded by 2q.
func (v *VecK) NormalizeAssumingLe2Q() {
for i := 0; i < K; i++ {
v[i].NormalizeAssumingLe2Q()
}
}
// Sets v to w + u. Does not normalize.
func (v *VecK) Add(w, u *VecK) {
for i := 0; i < K; i++ {
v[i].Add(&w[i], &u[i])
}
}
// Checks whether any of the coefficients exceeds the given bound in supnorm
//
// Requires the vector to be normalized.
func (v *VecK) Exceeds(bound uint32) bool {
for i := 0; i < K; i++ {
if v[i].Exceeds(bound) {
return true
}
}
return false
}
// Applies Poly.Power2Round componentwise.
//
// Requires the vector to be normalized.
func (v *VecK) Power2Round(v0PlusQ, v1 *VecK) {
for i := 0; i < K; i++ {
v[i].Power2Round(&v0PlusQ[i], &v1[i])
}
}
// Applies Poly.Decompose componentwise.
//
// Requires the vector to be normalized.
func (v *VecK) Decompose(v0PlusQ, v1 *VecK) {
for i := 0; i < K; i++ {
PolyDecompose(&v[i], &v0PlusQ[i], &v1[i])
}
}
// Sets v to the hint vector for v0 the modified low bits and v1
// the unmodified high bits --- see makeHint().
//
// Returns the number of ones in the hint vector.
func (v *VecK) MakeHint(v0, v1 *VecK) (pop uint32) {
for i := 0; i < K; i++ {
pop += PolyMakeHint(&v[i], &v0[i], &v1[i])
}
return
}
// Computes corrections to the high bits of the polynomials in the vector
// w using the hints in h and sets v to the corrected high bits. Returns v.
// See useHint().
func (v *VecK) UseHint(q, hint *VecK) *VecK {
for i := 0; i < K; i++ {
PolyUseHint(&v[i], &q[i], &hint[i])
}
return v
}
// Sequentially packs each polynomial using Poly.PackT1().
func (v *VecK) PackT1(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
v[i].PackT1(buf[offset:])
offset += common.PolyT1Size
}
}
// Sets v to the vector packed into buf by PackT1().
func (v *VecK) UnpackT1(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
v[i].UnpackT1(buf[offset:])
offset += common.PolyT1Size
}
}
// Sequentially packs each polynomial using Poly.PackT0().
func (v *VecK) PackT0(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
v[i].PackT0(buf[offset:])
offset += common.PolyT0Size
}
}
// Sets v to the vector packed into buf by PackT0().
func (v *VecK) UnpackT0(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
v[i].UnpackT0(buf[offset:])
offset += common.PolyT0Size
}
}
// Sequentially packs each polynomial using Poly.PackLeqEta().
func (v *VecK) PackLeqEta(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
PolyPackLeqEta(&v[i], buf[offset:])
offset += PolyLeqEtaSize
}
}
// Sets v to the polynomials packed in buf using VecK.PackLeqEta().
func (v *VecK) UnpackLeqEta(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
PolyUnpackLeqEta(&v[i], buf[offset:])
offset += PolyLeqEtaSize
}
}
// Applies NTT componentwise. See Poly.NTT() for details.
func (v *VecK) NTT() {
for i := 0; i < K; i++ {
v[i].NTT()
}
}
// Sequentially packs each polynomial using PolyPackW1().
func (v *VecK) PackW1(buf []byte) {
offset := 0
for i := 0; i < K; i++ {
PolyPackW1(&v[i], buf[offset:])
offset += PolyW1Size
}
}
// Sets v to a - b.
//
// Warning: assumes coefficients of the polynomials of b are less than 2q.
func (v *VecK) Sub(a, b *VecK) {
for i := 0; i < K; i++ {
v[i].Sub(&a[i], &b[i])
}
}
// Sets v to 2ᵈ w without reducing.
func (v *VecK) MulBy2toD(w *VecK) {
for i := 0; i < K; i++ {
v[i].MulBy2toD(&w[i])
}
}
// Applies InvNTT componentwise. See Poly.InvNTT() for details.
func (v *VecK) InvNTT() {
for i := 0; i < K; i++ {
v[i].InvNTT()
}
}
// Applies Poly.ReduceLe2Q() componentwise.
func (v *VecK) ReduceLe2Q() {
for i := 0; i < K; i++ {
v[i].ReduceLe2Q()
}
}
|